Handchir Mikrochir Plast Chir 2004; 36(2/03): 85-97
DOI: 10.1055/s-2004-817884
Original Article

Georg Thieme Verlag KG Stuttgart · New York

Genetics of Congenital Hand Anomalies

Die Genetik angeborener HandfehlbildungenG. C. Schwabe1 , S. Mundlos2
  • 1Max-Planck-Institut für Molekulare Genetik, Berlin, Germany
  • 2Institut für Medizinische Genetik, Humboldt-Universität, Charité, Berlin, Germany
Further Information

Publication History

Received: September 11, 2003

Accepted: November 2, 2003

Publication Date:
26 May 2004 (online)

Zusammenfassung

Angeborene Handfehlbildungen sind durch ein breites Spektrum an phänotypischen Manifestationen gekennzeichnet. Sie treten als isolierte Malformation oder als Teil verschiedener Syndrome auf. Die einzelnen Formen kongenitaler Handfehlbildungen sind selten, besitzen aber aufgrund ihrer Häufigkeit insgesamt und der hohen Belastung für Betroffene erhebliche klinische Relevanz. Die fortschreitende Erkenntnis über die molekularen Mechanismen der Embryonalentwicklung haben in den letzten Jahren wesentlich dazu beigetragen, die genetischen Ursachen kongenitaler Malformationen besser zu verstehen. Der hohe Grad an phänotypischer Variabilität kongenitaler Handfehlbildungen erschwert jedoch eine Etablierung präziser Genotyp-Phänotyp-Korrelationen. In diesem Übersichtsartikel präsentieren wir das Spektrum kongenitaler Malformationen, basierend auf einer entwicklungsbiologischen, anatomischen und genetischen Klassifikation unter Berücksichtigung der Bedeutung neuerer molekularer und entwicklungsbiologischer Erkenntnisse.

Abstract

Congenital limb malformations exhibit a wide spectrum of phenotypic manifestations and may occur as an isolated malformation and as part of a syndrome. They are individually rare, but due to their overall frequency and severity they are of clinical relevance. In recent years, increasing knowledge of the molecular basis of embryonic development has significantly enhanced our understanding of congenital limb malformations. In addition, genetic studies have revealed the molecular basis of an increasing number of conditions with primary or secondary limb involvement. The molecular findings have led to a regrouping of malformations in genetic terms. However, the establishment of precise genotype-phenotype correlations for limb malformations is difficult due to the high degree of phenotypic variability. We present an overview of congenital limb malformations based on an anatomic and genetic concept reflecting recent molecular and developmental insights.

References

  • 1 Agarwal P, Wylie J N, Galceran J, Arkhitko O, Li C, Deng C, Grosschedl R, Bruneau B G. Tbx5 is essential for forelimb bud initiation following patterning of the limb field in the mouse embryo.  Development. 2003;  130 623-633
  • 2 Al-Shawi R, Ashton S V, Underwood C, Simons J P. Expression of the Ror1 and Ror2 receptor tyrosine kinase genes during mouse development.  Dev Genes Evol. 2001;  211 161-171
  • 3 Armour C M, McCready M E, Baig A, Hunter A G, Bulman D E. A novel locus for brachydactyly type A1 on chromosome 5p13. 3-p13. 2.  J Med Genet. 2002;  39 186-188
  • 4 Ashley C T, Warren S T. Trinucleotide repeat expansion and human disease.  Ann Rev Genet. 1995;  29 703-728
  • 5 Bähring S, Nagai T, Toka H R, Nitz I, Toka O, Aydin A, Muhl A, Wienker T F, Schuster H, Luft F C. Deletion at 12 p in a Japanese child with brachydactyly overlaps the assigned locus of brachydactyly with hypertension in a Turkish family.  Am J Hum Genet. 1997;  60 732-735
  • 6 Bamshad M, Lin R C, Law D J, Watkins W C, Krakowiak P A, Moore M E, Franceschini P, Lala R, Holmes L B, Gebuhr T C, Bruneau B G, Schinzel A, Seidman J G, Seidman C E, Jorde L B. Mutations in human TBX3 alter limb, apocrine and genital development in ulnar-mammary syndrome.  Nat Genet. 1997;  16 311-315
  • 7 Basson C T, Cowley G S, Solomon S D, Weissman B, Poznanski A K, Traill T A, Seidman J G, Seidman C E. The clinical and genetic spectrum of the Holt-Oram syndrome (heart-hand syndrome).  N Engl J Med. 1994;  330 885-891
  • 8 Bell J. On brachydactyly and symphalangism. Penrose LS The Treasury of Human Inheritance. Vol. 5. Cambridge; Cambridge University Press 1951: 1-31
  • 9 Bosse K, Betz R C, Lee Y A, Wienker T F, Reis A, Kleen H, Propping P, Cichon S, Nothen M M. Localization of a gene for syndactyly type 1 to chromosome 2q34-q36.  Am J Hum Genet. 2000;  7 492-497
  • 10 Capdevila J, Johnson R L. Endogenous and ectopic expression of noggin suggests a conserved mechanism for regulation of BMP function during limb and somite patterning.  Dev Biol. 1998;  197 205-217
  • 11 Celli J, Duijf P, Hamel Bamshad B CM, Kramer B, Smits A, Newbury-Ecob R, Hennekam R C, Van Buggenhout G, van Haeringen A, Woods C, van Essen A, de Waal R, Vriend G, Haber D A, Yang A, McKeon F, Brunner H, van Bokhoven H. Heterozygous germline mutations in the p53 homolog p63 are the cause of EEC syndrome.  Cell. 1999;  99 143-153
  • 12 Chen H, Lun Y, Ovchinnikov D, Kokubo H, Oberg K C, Pepicelli C V, Gan L, Lee B, Johnson R L. Limb and kidney defects in Lmx1b mutant mice suggest an involvement of LMX1 B in human nail patella syndrome.  Nat Genet. 1998;  19 51-55
  • 13 Davenport T G, Jerome-Majewska L A, Papaioannou V E. Mammary gland, limb and yolk sac defects in mice lacking Tbx3, the gene mutated in human ulnar mammary syndrome.  Development. 2003;  130 2263-2273
  • 14 Dreyer S, Zhou G, Baldini A, Winterpacht A, Zabel B, Cole W, Johnson R, Lee B. Mutations in LMX1 B cause abnormal skeletal patterning and renal dysplasia in nail patella syndrome.  Nat Genet. 1998;  19 47-50
  • 15 Dudley A T, Ros M A, Tabin C J. A re-examination of proximodistal patterning during vertebrate limb development.  Nature. 2002;  418 539-544
  • 16 Duijf P H, Vanmolkot K R, Propping P, Friedl W, Krieger E, McKeon F, Doetsch V, Brunner H G, van Bokhoven H. Gain-of-function mutation in ADULT syndrome reveals the presence of a second transactivation domain in p63.  Hum Mol Genet. 2002;  11 799-804
  • 17 Faiyaz ul Haque M, Uhlhaas S, Knapp M, Schuler H, Friedl W, Ahmad M, Propping P. Mapping of the gene for X-chromosomal split-hand/split-foot anomaly to Xq26-q26. 1.  Hum Genet. 1993;  91 17-19
  • 18 Faiyaz-Ul-Haque M, Ahmad W, Zaidi S H, Haque S, Teebi A S, Ahmad M, Cohn D H, Tsui L C. Mutation in the cartilage-derived morphogenetic protein-1 (CDMP1) gene in a kindred affected with fibular hypoplasia and complex brachydactyly (DuPan syndrome).  Clin Genet. 2002;  61 454-458
  • 19 Farabee W C. Hereditary and Sexual Influence in Meristic Variation: A Study of Digital Malformation in Man. Harvard University; Ph. D. thesis 1903
  • 20 Francis-West P H, Abdelfattah A, Chen P, Allen C, Parish J, Ladher R, Allen S, MacPherson S, Luyten F P, Archer C W. Mechanisms of GDF-5 action during skeletal development.  Development. 1999;  126 1305-1315
  • 21 Gao B, Guo J, She C, Shu A, Yang M, Tan Z, Yang X, Guo S, Feng G, He L. Mutations in IHH, encoding Indian hedgehog, cause brachydactyly type A-1.  Nat Genet. 2001;  28 386-388
  • 22 Gong Y, Krakow D, Marcelino J, Wilkin D, Chitayat D, Babul-Hirji R, Hudgins L, Cremers C W, Cremers F P, Brunner H G, Reinker K, Rimoin D L, Cohn D H, Goodman F R, Reardon W, Patton M, Francomano C A, Warman M L. Heterozygous mutations in the gene encoding noggin affect human joint morphogenesis.  Nat Genet. 1999;  21 302-304
  • 23 Goodman F R, Mundlos S, Muragaki Y, Donnai D, Giovannucci-Uzielli M L, Lapi E, Majewski F, McGaughran J, McKeown C, Reardon W, Upton J, Winter R M, Olsen B R, Scambler P J. Synpolydactyly phenotypes correlate with size of expansions in HOXD13 polyalanine tract.  Proc Natl Acad Sci USA. 1997;  94 7458-7463
  • 24 Ingham P W, McMahon A P. Hedgehog signaling in animal development.  Genes Dev. 2001;  15 3059-3087
  • 25 Innis J W, Goodman F R, Bacchelli C, Williams T M, Mortlock D P, Sateesh P, Scambler P J, McKinnon W, Guttmacher A E. A HOXA13 allele with a missense mutation in the homeobox and a dinucleotide deletion in the promoter underlies Guttmacher syndrome.  Hum Mutat. 2002;  19 573-574
  • 26 Johnson D, Kan S, Oldridge M, Trembath R C, Roche P, Esnouf R M, Giele H, Wilkie A OM. Missense mutations in the homeodomain of HOXD13 are associated with brachydactyly types D and E.  Am J Hum Genet. 2003;  72 984-997
  • 27 Johnson K R, Lane P W, Ward-Bailey P, Davisson M T. Mapping the mouse dactylaplasia mutation, Dac, and a gene that controls its expression, mdac.  Genomics. 1995;  20 457-464
  • 28 Johnson R L, Tabin C J. Molecular models for vertebrate limb development.  Cell. 1997;  90 979-990
  • 29 Kohlhase J, Wischermann A, Reichenbach H, Froster U, Engel W. Mutations in the SALL1 putative transcription factor gene cause Townes-Brocks syndrome.  Nat Genet. 1998;  18 81-83
  • 30 Kornak U, Mundlos S. Genetic Disorders of the Skeleton: A Developmental Approach.  Am J Hum Genet. 2003;  73 447-474
  • 31 Koster R, Stick R, Lossli F, Wittbrodt J. Medaka spalt acts as a target gene of hedgehog signaling.  Development. 1997;  124 3147-3156
  • 32 Lehmann K, Seemann P, Stricker S, Sammar M, Meyer B, Süring K, Majewski F, Tinschert S, Muller D, Knaus P, Nürnberg P, Mundlos S. Mutations in bone morphogenetic protein receptor1 B cause brachydactyly type A2.  Proc Natl Acad Sci USA. 2003;  100 12277-12282
  • 33 Lettice L A, Heaney S J, Purdie L A, Li L, de Beer P, Oostra B A, Goode D, Elgar G, Hill R, de Graaff E. A long-range Shh enhancer regulates expression in the developing limb and fin and is associated with preaxial polydactyly.  Hum Mol Genet. 2003;  12 1725-1735
  • 34 Li Q Y, Newbury-Ecob R A, Terrett J A, Wilson D I, Curtis A R, Yi C H, Gebuhr T, Bullen P J, Robson S C, Strachan T, Bonnet D, Lyonnet S, Young I D, Raeburn J A, Buckler A J, Law D J, Brook J D. Holt-Oram syndrome is caused by mutations in TBX5, a member of the Brachyury (T) gene family.  Nat Genet. 1997;  15 21-29
  • 35 Mariani F V, Martin G R. Deciphering skeletal patterning: clues from the limb.  Nature. 2003;  423 319-325
  • 36 McGrath J A, Duijf P H, Doetsch V, Irvine A D, de Waal R, Vanmolkot K R, Wessagowit V, Kelly A, Atherton D J, Griffiths W A, Orlow S J, van Haeringen A, Ausems M G, Yang A, McKeon F, Bamshad M A, Brunner H G, Hamel B C, van Bokhoven H. Hay-Wells syndrome is caused by heterozygous missense mutations in the SAM domain of p63.  Hum Mol Genet. 2001;  10 221-229
  • 37 McMahon A P. More surprises in the hedgehog signaling pathway.  Cell. 2000;  100 185-188
  • 38 Mortlock D P, Innis J W. Mutation of HOXA13 in hand-foot-genital syndrome.  Nat Genet. 1997;  15 179-180
  • 39 Muragaki Y, Mundlos S, Upton J, Olsen B R. Altered growth and branching patterns in synpolydactyly caused by mutations in HOXD13.  Science. 1996;  272 548-551
  • 40 Nunes M E, Schutt G, Kapur R P, Luthardt F, Kukolich M, Byers P, Evans J P. A second autosomal split hand/split foot locus maps to chromosome 10q24-q25.  Hum Mol Genet. 1995;  4 2165-2167
  • 41 Oldridge M, Fortuna A M, Maringa M, Propping P, Mansour S, Pollitt C, DeChiara T M, Kimble R B, Valenzuela D M, Yancopoulos G D, Wilkie A O. Dominant mutations in ROR2, encoding an orphan receptor tyrosine kinase, cause brachydactyly type B.  Nat Genet. 2000;  24 275-278
  • 42 Papaioannou V E. T-box genes in development: from hydra to humans.  Int Rev Cytol. 2001;  207 1-70
  • 43 Parr B A, McMahon A P. Dorsalizing signal Wnt-7 a required for normal polarity of D-V and A-P axes of mouse limb.  Nature. 1995;  374 350-353
  • 44 Paznekas W A, Boyadjiev S A, Shapiro R E, Daniels O, Wollnik B, Keegan C E, Innis J W, Dinulos M B, Christian C, Hannibal M C, Jabs E W. Connexin 43 (GJA1) mutations cause the pleiotropic phenotype of oculodentodigital dysplasia.  Am J Hum Genet. 2003;  72 408-418
  • 45 Polinkovsky A, Robin N H, Thomas J T, Irons M, Lynn A, Goodman F R, Reardon W, Kant S G, Brunner H G, van der Burgt I, Chitayat D, McGaughran J, Donnai D, Luyten F P, Warman M L. Mutations in CDMP1 cause autosomal dominant brachydactyly type C.  Nat Genet. 1997;  17 18-19
  • 46 Radhakrishna U, Bornholdt D, Scott H S, Patel U C, Rossier C, Engel H, Bottani A, Chandal D, Blouin J L, Solanki J V, Grzeschik K H, Antonarakis S E. The phenotypic spectrum of GLI3 morphopathies includes autosomal dominant preaxial polydactyly type-IV and postaxial polydactyly type-A/B; No phenotype prediction from the position of GLI3 mutations.  Am J Hum Genet. 1999;  65 645-655
  • 47 Radhakrishna U, Wild A, Grzeschik K H, Antonarakis S E. Mutation in GLI3 in postaxial polydactyly type A.  Nat Genet. 1997;  17 269-271
  • 48 Scherer S W, Poorkaj P, Massa H, Soder S, Allen T, Nunes M, Geshuri D, Wong E, Belloni E, Little S, Zhou L, Becker D, Kere J, Ignatius J, Niikawa N, Fukushima Y, Hasegawa T, Weissenbach J, Boncinelli E, Trask B, Tsui L C, Evans J P. Physical mapping of the split hand/split foot locus on chromosome 7 and implication in syndromic ectrodactyly.  Hum Mol Genet. 1994;  3 1345-1354
  • 49 Schuster H, Wienker T E, Bahring S, Bilginturan N, Toka H R, Neitzel H, Jeschke E, Toka O, Gilbert D, Lowe A, Ott J, Haller H, Luft F C. Severe autosomal dominant hypertension and brachydactyly in a unique Turkish kindred maps to human chromosome 12.  Nat Genet. 1996;  13 98-100
  • 50 Schwabe G C, Tinschert S, Buschow C, Meinecke P, Wolff G, Gillessen-Kaesbach G, Oldridge M, Wilkie A O, Kömec R, Mundlos S. Distinct mutations in the receptor tyrosine kinase gene ROR2 cause brachydactyly type B.  Am J Hum Genet. 2000;  67 822-831
  • 51 Schwabe G C, Türkmen S, Leschik G, Palanduz S, Meinecke P, Stöver B, Goecke T O, Mundlos S. A homozygous missense mutation in the prodomain of CDMP1 causes a pronounced form of brachydactyly type C.  Am J Med Genet. 2004;  124 A 356-363
  • 52 Schwabe G C, Trepczik B, Süring K, Brieske N, Tucker A S, Sharpe P T, Minami Y, Mundlos S. Ror2 knock out mouse as a model for the developmental pathology of autosomal recessive Robinow syndrome.  Dev Dyn. 2004;  229 400-410
  • 53 Storm E E, Huynh T V, Copeland N G, Jenkins N A, Kingsley D M, Lee S J. Limb alterations in brachypodism mice due to mutations in a new member of the TGF beta-superfamily.  Nature. 1994;  368 639-643
  • 54 Temtamy S A, McKusick V A. The Genetics of Hand Malformations. New York; The National Foundation March of Dimes 1978
  • 55 Thomas J T, Kilpatrick M W, Lin K, Erlacher L, Lembessis P, Costa T, Tsipouras P, Luyten F P. Disruption of human limb morphogenesis by a dominant negative mutation in CDMP1.  Nat Genet. 1997;  17 58-64
  • 56 Thomas J T, Lin K, Nandedkar M, Camargo M, Cervenka J, Luyten F P. A human chondrodysplasia due to a mutation in a TGF-beta superfamily member.  Nat Genet. 1996;  12 315-317
  • 57 Tsukurov O, Boehmer A, Flynn J, Nicolai J P, Hamel B C, Traill S, Zaleske D, Mankin H J, Yeon H, Ho C. A complex bilateral polysyndactyly disease locus maps to chromosome 7q36.  Nat Genet. 1994;  6 282-286
  • 58 Vortkamp A, Gessler M, Grzeschik K. GLI3 zinc-finger gene interrupted by translocations in Greig syndrome families.  Nature. 1991;  352 539-540
  • 59 Wassif C A, Maslen C, Kachilele-Linjewile S, Lin D, Linck L M, Connor W E, Steiner R D, Porter F D. Mutations in the human sterol delta7-reductase gene at 11 q12 - 13 cause Smith-Lemli-Opitz syndrome.  Am J Hum Genet. 1998;  63 55-62
  • 60 Witsch-Baumgartner M, Fitzky B U, Orogelkova M, Kraft H G, Moebius F F, Glossmann H, Seedorf U, Gillessen-Kaesbach G, Hoffmann G F, Clayton P, Kelley R I, Utermann G. Mutational spectrum in the Delta7-sterol reductase gene and genotype-phenotype correlation in 84 patients with Smith-Lemli-Opitz syndrome.  Am J Hum Genet. 2000;  66 402-412

Prof. Dr. med. Stefan Mundlos

Institut für Medizinische Genetik
Humboldt-Universität, Charité

Augustenburger Platz 1

13353 Berlin

Germany

Email: stefan.mundlos@charite.de

    >