Rofo 2004; 176(2): 170-174
DOI: 10.1055/s-2004-817624
Rapid Communication
© Georg Thieme Verlag Stuttgart · New York

Quantitative Analysis of Pulmonary Perfusion using Time-Resolved Parallel 3D MRI - Initial results

Quantitative Analyse der Lungenperfusion mittels zeitaufgelöster paralleler 3D-TRT: Erste ErgebnisseC.  Fink1 , F.  Risse2 , R.  Buhmann1 , S.  Ley1, 3 , F.  J.  Meyer4 , C.  Plathow1 , M.  Puderbach1 , H.-U.  Kauczor1
  • 1Abteilung Radiologie, Deutsches Krebsforschungszentrum (DKFZ) Innovative Krebsdiagnostik und -therapie, Heidelberg
  • 2Abteilung Medizinische Physik in der Radiologie, Deutsches Krebsforschungszentrum (DKFZ) Innovative Krebsdiagnostik und -therapie, Heidelberg
  • 3Klinik und Poliklinik für Radiologie, Universität Mainz
  • 4Abteilung Innere Medizin III, Medizinische Universitätsklinik und Poliklinik Heidelberg
Further Information

Publication History

Publication Date:
11 February 2004 (online)

Zusammenfassung

Zielsetzung: Evaluation der zeitlich aufgelösten 3D MRT mit paralleler Bildgebung (PAT) für die quantitative Analyse der Lungenperfusion bei Patienten mit kardiopulmonalen Erkrankungen. Material und Methoden: Acht Patienten mit Lungenembolie oder pulmonaler Hypertension wurden mit einer zeitlich aufgelösten 3D Gradientenecho-Pulssequenz mit PAT (FLASH 3D, TE/TR: 0.8/1.9 ms; Flipwinkel: 40º; GRAPPA) untersucht. Eine quantitative Perfusionsanalyse basierend auf der Indikator-Verdünnungsmethode wurde mit einer dezidierten Software durchgeführt. Ergebnisse: Patienten mit Lungenembolie oder chronischer thromboembolischer pulmonaler Hypertension zeigten charakteristische keilförmige Perfusionsausfälle in der Perfusions-MRT. Die Perfusionsdefekte wiesen einen verringerten pulmonalen Blutfluss (PBF) und pulmonales Blutvolumen (PBV) sowie eine erhöhte mittlere Transitzeit (MTT) auf. Patienten mit primärer pulmonaler Hypertension oder Eisenmenger-Syndrom zeigten ein im Vergleich homogeneres Perfusionsmuster. Die mittlere MTT aller Patienten betrug 3,3 - 4,7 s. Der mittlere PBF und das mittlere PBV zeigten eine größere interindividuelle Schwankung (PBF: 104 - 322 ml/100 ml/min; PBV: 8 - 21 ml/100 ml). Schlussfolgerung: Die zeitlich aufgelöste 3D MRT mit PAT erlaubt zumindest eine semiquantitative Analyse der Lungenperfusion. Weitere Studien müssen den klinischen Nutzen dieser quantitativen Information für die Diagnose und Therapie kardiopulmonaler Erkrankungen evaluieren.

Abstract

Purpose: To assess the use of time-resolved parallel 3D MRI for a quantitative analysis of pulmonary perfusion in patients with cardiopulmonary disease. Materials and Methods: Eight patients with pulmonary embolism or pulmonary hypertension were examined with a time-resolved 3D gradient echo pulse sequence with parallel imaging techniques (FLASH 3D, TE/TR: 0.8/1.9 ms; flip angle: 40º; GRAPPA). A quantitative perfusion analysis based on indicator dilution theory was performed using a dedicated software. Results: Patients with pulmonary embolism or chronic thromboembolic pulmonary hypertension revealed characteristic wedge-shaped perfusion defects at perfusion MRI. They were characterized by a decreased pulmonary blood flow (PBF) and pulmonary blood volume (PBV) and increased mean transit time (MTT). Patients with primary pulmonary hypertension or Eisenmenger syndrome showed a more homogeneous perfusion pattern. The mean MTT of all patients was 3.3 - 4.7 s. The mean PBF and PBV showed a broader interindividual variation (PBF: 104 - 322 ml/100 ml/min; PBV: 8 - 21 ml/100 ml). Conclusion: Time-resolved parallel 3D MRI allows at least a semi-quantitative assessment of lung perfusion. Future studies will have to assess the clinical value of this quantitative information for the diagnosis and management of cardiopulmonary disease.

References

  • 1 Fukuchi K, Hayashida K, Nakanishi N, Inubushi M, Kyotani S, Nagaya N, Ishida Y. Quantitative analysis of lung perfusion in patients with primary pulmonary hypertension.  J Nucl Med. 2002;  43 757-761
  • 2 Hatabu H, Gaa J, Kim D, Li W, Prasad P V, Edelman R R. Pulmonary perfusion: qualitative assessment with dynamic contrast-enhanced MRI using ultra-short TE and inversion recovery turbo FLASH.  Magn Reson Med. 1996;  36 503-508
  • 3 Levin D L, Chen Q, Zhang M, Edelman R R, Hatabu H. Evaluation of regional pulmonary perfusion using ultrafast magnetic resonance imaging.  Magn Reson Med. 2001;  46 66-171
  • 4 Hatabu H, Tadamura E, Levin D L, Chen Q, Li W, Kim D, Prasad P V, Edelman R R. Quantitative assessment of pulmonary perfusion with dynamic contrast-enhanced MRI.  Magn Reson Med. 1999;  42 033-1038
  • 5 Iwasawa T, Saito K, Ogawa N, Ishiwa N, Kurihara H. Prediction of postoperative pulmonary function using perfusion magnetic resonance imaging of the lung.  J Magn Reson Imaging. 2002;  15 685-692
  • 6 Matsuoka S, Uchiyama K, Shima H, Terakoshi H, Nojiri Y, Oishi S, Ogata H. Detectability of pulmonary perfusion defect and influence of breath holding on contrast-enhanced thick-slice 2D and on 3D MR pulmonary perfusion images.  J Magn Reson Imaging. 2001;  14 580-585
  • 7 Fink C, Bock M, Puderbach M, Schmahl A, Delorme S. Partially parallel three-dimensional magnetic resonance imaging for the assessment of lung perfusion - initial results.  Invest Radiol. 2003;  38 482-488
  • 8 Heidemann R M, Ozsarlak O, Parizel P M, Michiels J, Kiefer B, Jellus V, Muller M, Breuer F, Blaimer M, Griswold M A, Jakob P M. A brief review of parallel magnetic resonance imaging.  Eur Radiol. 2003;  13 2323-2337
  • 9 Strich G, Hagan P L, Gerber K H, Slutsky R A. Tissue distribution and magnetic resonance spin lattice relaxation effects of gadolinium-DTPA.  Radiology. 1985;  154 723-726
  • 10 Meier P, Zierler K L. On the theory of the indicator-dilution method for measurement of blood flow and volume.  Appl Physiol. 1954;  6 731-744
  • 11 Østergaard L, Weiskoff R M, Chesler D A, Gyldensted C, Rosen B R. High Resolution Measurement of Cerebral Blood Flow using Intravascular Tracer Bolus Passages. Part I: Mathematical Approach and Statistical Analysis.  Magn Reson Med. 1996;  36 715-725
  • 12 Østergaard L, Sorensen A G, Kwong K K, Weiskoff R M, Gyldensted C, Rosen B R. High Resolution Measurement of Cerebral Blood Flow using Intravascular Tracer Bolus Passages. Part II: Experimental Comparison and Preliminary Results.  Magn Reson Med. 1996;  36 726-736
  • 13 Herborn C U, Lauenstein T C, Ruehm S G, Bosk S, Debatin J F, Goyen M. Intraindividual comparison of gadopentetate dimeglumine, gadobenate dimeglumine, and gadobutrol for pelvic 3D magnetic resonance angiography.  Invest Radiol. 2003;  38 27-33
  • 14 Schuster D P, Kaplan J D, Gauvain K, Welch M J, Markham J. Measurement of regional pulmonary blood flow with PET.  J Nucl Med. 1995;  36 371-377
  • 15 Schoepf U J, Bruening R, Konschitzky H, Becker C R, Knez A, Weber J, Muehling O, Herzog P, Huber A, Haberl R, Reiser M F. Pulmonary embolism: comprehensive diagnosis by using electron-beam CT for detection of emboli and assessment of pulmonary blood flow.  Radiology. 2000;  217 693-700

Christian FinkMD 

Innovative Krebsdiagnostik und -therapie Abteilung Radiologie E010 Deutsches Krebsforschungszentrum (DKFZ)

Im Neuenheimer Feld 280

69120 Heidelberg

Phone: ++49-6221-42 2580

Fax: ++49-6221-42 2462

Email: c.fink@dkfz.de

    >