Rofo 2004; 176(9): 1219-1225
DOI: 10.1055/s-2004-813403
Übersicht

© Georg Thieme Verlag KG Stuttgart · New York

Mikro-Computertomographie von Blutgefäßen parenchymatöser Organe und von Lungenalveolen

Micro-Computed Tomography of the Vasculature in Parenchymal Organs and Lung AlveoliA. C. Langheinrich1 , R. M. Bohle2 , A. Breithecker1 , D. Lommel1 , W. S. Rau1
  • 1Abteilung für Diagnostische Radiologie, Justus-Liebig-Universität Gießen
  • 2Zentrum für Pathologie, Justus-Liebig-Universität Gießen
Further Information

Publication History

Publication Date:
26 August 2004 (online)

Zusammenfassung

Die Mikro-Computertomographie (µCT) dient der dreidimensionalen Bildgebung, Strukturanalyse und Morphometrie biologischer Gewebe. Dieser Artikel gibt einen Überblick über die Weiterentwicklung der Technik, die anfangs nur in der Osteoporoseforschung eingesetzt wurde, für die Visualisierung von Blutgefäßen und Parenchymstrukturen in verschiedenen Organen und über die von uns angewandten Methoden der Kontrastverstärkung. Mittels µCT lassen sich quantitative Aussagen über die Morphologie und die Zusammensetzung von Plaques in der Arterienwand gewinnen, die der lichtmikroskopischen Morphometrie ebenbürtig sind. Anhand unterschiedlicher Dichtewerte kann die µCT zwischen fibrösen Plaques, kalzifizierten Läsionen, Fibroatheromen und lipidreichen Läsionen differenzieren. In der Niere macht die µCT nach Kontrastmittelfüllung der Arterien die Glomerula der Rinde und die Vasa recta des Marks sichtbar. In der Plazenta können Blutgefäße von 2 mm Durchmesser (Arterien der Chorionplatte) bis zu 14 µm Durchmesser (terminal loop) dreidimensional erfasst und quantitativ ausgewertet werden. Zur Visualisierung des Lungenparenchyms mittels µCT ist es erforderlich, die Alveolen zu entfalten und die Strahlenabsorption der dünnen Alveolenwände zu erhöhen. Zwei Präparationsmethoden werden beschrieben: (1) Fixierung von humanem Lungengewebe mit Formalindampf und Kontrastverstärkung mit Silbernitrat; (2) intravenöse Injektion eines Gemisches aus Bariumsulfat, Gelatine und Thymol in vivo beim final narkotisierten Versuchstier. Die Mikroarchitektur des Lungenparenchyms ist mit beiden Methoden zu erfassen.

Abstract

Micro-CT has become a powerful technique in non-destructive 3D imaging and morphometric analysis. First results were limited to the investigation of osteoporosis in cancellous bone. But the availability of systems with almost microscopic resolution and sufficient soft tissue contrast has opened up entirely new applications for laboratory investigation of blood vessels and soft tissues. This article gives an overview of micro-CT technology and the potential of three-dimensional imaging of the vessel wall and soft-tissue architecture imaging in different organs using different contrast perfusion and staining techniques. Micro-CT provides quantitative information on human plaque morphology equivalent to histomorphometric analysis. Based on differences in grey-scale attenuations, micro-CT also correctly identifies atherosclerotic lesions that are histologically classified as fibrous plaques, calcified lesions, fibroatheroma, and lipid rich lesions. Micro-CT is a promising method to visualize the architecture of the renal vasculature and, importantly, to separate cortex and medulla for the visualization of glomeruli and their afferent and efferent arterioles. Micro-CT can determine the vascular surface in a defined placental volume. Combining of micro-CT data and total placental volume enables an estimation of the approximate surface of the placental vasculature. The diameter of opacified vessels in the investigated samples ranged from 2 mm (chorion plate artery) to 14 µm (smallest vessel diameter, terminal loop). Recognizing that lung parenchyma can only be visualized if the alveoli are completely expanded and the contrast of the thin alveolar walls is enhanced, we tested two preparation methods: (1) fixation of lung tissue with formalin vapour and staining with silver nitrate, and (2) intravenous injection of a barium sulfate-gelatine-thymol mixture in vivo in the anesthetized animal. We evaluated the ability of this mixture to enter the pulmonary microcirculation and the technical feasibility of micro-CT to assess lung micro-architecture.

Literatur

  • 1 Benveniste H, Blackband S. MR microscopy and high resolution small animal MRI: applications in neuroscience research.  Prog Neurobiol. 2002;  67 (5) 393-420
  • 2 Fink C, Eichhorn J, Kiessling F. et al . Zeitlich aufgelöste multiphasische 3D-MR-Angiographie zur Diagnostik des Lungengefäßsystems bei Kindern.  Fortschr Röntgenstr. 2003;  175 (7) 929-935
  • 3 Vogt F M, Goyen M, Debatin J F. MR angiography of the chest.  Radiol Clin North Am. 2003;  41 (1) 29-41
  • 4 Wiesner W, Pfammatter T, Krestin G P. et al . MRT und MRA von Nierentransplantaten - Gefäß- und Perfusionsbeurteilung.  Fortschr Röntgenstr. 1998;  169 (3) 290-296
  • 5 Achenbach S, Hoffmann U, Ferencik M. et al . Tomographic coronary angiography by EBCT and MDCT.  Prog Cardiovasc Dis. 2003;  46 (2) 185-195
  • 6 Achenbach S. Clinical Use of Multi-Slice CT Coronary Angiography.  Herz. 2003;  28 (2) 119-125
  • 7 Ropers D, Baum U, Pohle K. et al . Detection of coronary artery stenoses with thin-slice multi-detector row spiral computed tomography and multiplanar reconstruction.  Circulation. 2003;  107 (5) 664-666
  • 8 Costa M A, Sabate M, Kay I P. et al . Three-dimensional intravascular ultrasonic volumetric quantification of stent recoil and neointimal formation of two new generation tubular stents.  Am J Cardiol. 2000;  85 (2) 135-139
  • 9 Finet G, Cachard C, Delachartre P. et al . Artifacts in intravascular ultrasound imaging during coronary artery stent implantation.  Ultrasound Med Biol. 1998;  24 (6) 793-802
  • 10 Maintz D, Fischbach R, Juergens K U. et al . Multislice CT angiography of the iliac arteries in the presence of various stents: in vitro evaluation of artifacts and lumen visibility.  Invest Radiol. 2001;  36 (12) 699-704
  • 11 Nissen S E, Yock P. Intravascular ultrasound: novel pathophysiological insights and current clinical applications.  Circulation. 2001;  103 (4) 604-616
  • 12 Jorgensen S M, Demirkaya O, Ritman E L. Three-dimensional imaging of vasculature and parenchyma in intact rodent organs with X-ray micro-CT.  Am J Physiol. 1998;  275 (3 Pt 2) H1103-H1114
  • 13 Wan S Y, Kiraly A P, Ritman E L. et al . Extraction of the hepatic vasculature in rats using 3-D micro-CT images.  IEEE Trans Med Imaging. 2000;  19 (9) 964-971
  • 14 Wang G. X-ray micro-CT with a displaced detector array.  Med Phys. 2002;  29 (7) 1634-1636
  • 15 Engelke K, Karolczak M, Lutz A. et al . Micro-CT. Technology and application for assessing bone structure.  Radiologe. 1999;  39 (3) 203-212
  • 16 Kapadia R D, Stroup G B, Badger A M. et al . Applications of micro-CT and MR microscopy to study pre-clinical models of osteoporosis and osteoarthritis.  Technol Health Care. 1998;  6 (5 - 6) 361-372
  • 17 Shibata T, Nagano T. Applying very high resolution microfocus X-ray CT and 3-D reconstruction to the human auditory apparatus.  Nat Med. 1996;  2 (8) 933-935
  • 18 Simopoulos D N, Gibbons S J, Malysz J. et al . Corporeal structural and vascular micro architecture with X-ray micro computerized tomography in normal and diabetic rabbits: histopathological correlation.  J Urol. 2001;  165 (5) 1776-1782
  • 19 Maehara N. Experimental microcomputed tomography study of the 3D microangioarchitecture of tumors.  Eur Radiol. 2003;  13 (7) 1559-1565
  • 20 Bentley M D, Rodriguez-Porcel M, Lerman A. et al . Enhanced renal cortical vascularization in experimental hypercholesterolemia.  Kidney Int. 2002;  61 (3) 1056-1063
  • 21 Fortepiani L A, Ruiz M C, Passardi F. et al . Effect of losartan on renal microvasculature during chronic inhibition of nitric oxide visualized by micro-CT.  Am J Physiol Renal Physiol. 2003;  285 (5) F852-FF860
  • 22 Ortiz M C, Garcia-Sanz A, Bentley M D. et al . Microcomputed tomography of kidneys following chronic bile duct ligation.  Kidney Int. 2000;  58 (4) 1632-1640
  • 23 Rodriguez-Porcel M, Lerman A, Ritman E L. et al . Altered myocardial microvascular 3D architecture in experimental hypercholesterolemia.  Circulation. 2000;  102 (17) 2028-2030
  • 24 Simopoulos D N, Gibbons S J, Malysz J. et al . Corporeal structural and vascular micro architecture with X-ray micro computerized tomography in normal and diabetic rabbits: histopathological correlation.  J Urol. 2001;  165 (5) 1776-1782
  • 25 Wan S Y, Ritman E L, Higgins W E. Multi-generational analysis and visualization of the vascular tree in 3D micro-CT images.  Comput Biol Med. 2002;  32 (2) 55-71
  • 26 Kwon H M, Sangiorgi G, Ritman E L. et al . Enhanced coronary vasa vasorum neovascularization in experimental hypercholesterolemia.  J Clin Invest. 1998;  101 (8) 1551-1556
  • 27 Wilson S H, Herrmann J, Lerman L O. et al . Simvastatin preserves the structure of coronary adventitial vasa vasorum in experimental hypercholesterolemia independent of lipid lowering.  Circulation. 2002;  105 (4) 415-418
  • 28 Beighley P E, Thomas P J, Jorgensen S M. et al . 3D architecture of myocardial microcirculation in intact rat heart: a study with micro-CT.  Adv Exp Med Biol. 1997;  430 165-175
  • 29 Gossl M, Malyar N M, Rosol M. et al . Impact of coronary vasa vasorum functional structure on coronary vessel wall perfusion distribution.  Am J Physiol Heart Circ Physiol. 2003;  285 (5) 2019-2026
  • 30 Kantor B, Ritman E L, Holmes J DR. et al . Imaging Angiogenesis with Three-Dimensional Microscopic Computed Tomography [Record Supplied By Publisher].  Curr Interv Cardiol Rep. 2000;  2 (3) 204-212
  • 31 Kantor B, Jorgensen S M, Lund P E. et al . Cryostatic micro-computed tomography imaging of arterial wall perfusion.  Scanning. 2002;  24 (4) 186-190
  • 32 Lerman A, Ritman E L. Evaluation of microvascular anatomy by micro-CT.  Herz. 1999;  24 (7) 531-533
  • 33 Garcia-Sanz A, Rodriguez-Barbero A, Bentley M D. et al . Three-dimensional microcomputed tomography of renal vasculature in rats.  Hypertension. 1998;  31 440-444
  • 34 Gossl M, Rosol M, Malyar N M. et al . Functional anatomy and hemodynamic characteristics of vasa vasorum in the walls of porcine coronary arteries [In Process Citation].  Anat Rec. 2003;  272 (2) 526-537
  • 35 Kantor B, Kwon H M, Ritman E L. et al . Images in Cardiology Imaging the coronary microcirculation: 3D micro-CT of coronary vasa vasorum.  Int J Cardiovasc Intervent. 1999;  2 (1) 79
  • 36 Karau K L, Johnson R H, Molthen R C. et al . Microfocal X-ray CT imaging and pulmonary arterial distensibility in excised rat lungs.  Am J Physiol Heart Circ Physiol. 2001;  281 (3) H1447-H1457
  • 37 Wan S Y, Kiraly A P, Ritman E L. et al . Extraction of the hepatic vasculature in rats using 3-D micro-CT images.  IEEE Trans Med Imaging. 2000;  19 (9) 964-971
  • 38 Langheinrich A C, Wienhard J, Vorman S. et al . Analysis of the Fetal Placental Vascular Tree by X-ray Micro-Computed Tomography.  Placenta. 2004;  25 (1) 95-100
  • 39 Langheinrich A C, Bohle R M, Greschus S. et al . Atherosclerotic lesions at Micro CT: Feasibility for analysis of coronary artery wall in autopsy specimen.  Radiology. 2004 (in press); 
  • 40 Rau W S, Hauenstein K, Mittermayer C. et al . A simple and rapid method for postmortem radiographic investigation of lung fine structure.  Pathol Res Pract. 1980;  170 (4) 426-432
  • 41 Rau W S, Hauenstein K, Volk P. et al . Die röntgenologische Feinstruktur der Lunge. Gefrierhärtung isolierter Lungen in flüssigem Stickstoff.  Fortschr Röntgenstr. 1980;  133 (4) 400-405
  • 42 Rau W S, Mittermayer C. Die röntgenologische Feinstruktur der Lunge. Volumenkontrollierte Fixierung isolierter Lungen mit Formalindampf.  Fortschr Röntgenstr. 1980;  133 (3) 233-239
  • 43 Langheinrich A C, Leithauser B, Greschus S. et al . Assessment of Acute Rat Lung Injury by Micro-Computed Tomography-Feasibility.  Radiology. 2004 (in press); 
  • 44 Paulus M J, Gleason S S, Easterly M E. et al . A review of high-resolution X-ray computed tomography and other imaging modalities for small animal research.  Lab Anim (NY). 2001;  30 (3) 36-45
  • 45 Kinney J H, Ryaby J T, Haupt D L. et al . Three-dimensional in vivo morphometry of trabecular bone in the OVX rat model of osteoporosis.  Technol Health Care. 1998;  6 (5 - 6) 339-350

Prof. Dr. Wigbert S. Rau

Klinikstr. 36

35385 Gießen

Phone: 06 41/9 94 18 00

Fax: 06 41/9 94 18 09

Email: Wigbert.Rau@radiol.med.uni-giessen.de

    >