Plant Biol (Stuttg) 2003; 5(4): 350-358
DOI: 10.1055/s-2003-42710
Acute View

Georg Thieme Verlag Stuttgart · New York

Evolution of Protein Targeting into “Complex” Plastids: The “Secretory Transport Hypothesis”

O. Kilian 1 , P. G. Kroth 1
  • 1Fachbereich Biologie, Universität Konstanz, Konstanz, Germany
Further Information

Publication History

Publication Date:
02 October 2003 (online)

Abstract

In algae different types of plastids are known, which vary in pigment content and ultrastructure, providing an opportunity to study their evolutionary origin. One interesting feature is the number of envelope membranes surrounding the plastids. Red algae, green algae and glaucophytes have plastids with two membranes. They are thought to originate from a primary endocytobiosis event, a process in which a prokaryotic cyanobacterium was engulfed by a eukaryotic host cell and transformed into a plastid. Several other algal groups, like euglenophytes and heterokont algae (diatoms, brown algae, etc.), have plastids with three or four surrounding membranes, respectively, probably reflecting the evolution of these organisms by so-called secondary endocytobiosis, which is the uptake of a eukaryotic alga by a eukaryotic host cell. A prerequisite for the successful establishment of primary or secondary endocytobiosis must be the development of suitable protein targeting machineries to allow the transport of nucleus-encoded plastid proteins across the various plastid envelope membranes. Here, we discuss the possible evolution of such protein transport systems. We propose that the secretory system of the respective host cell might have been the essential tool to establish protein transport into primary as well as into secondary plastids.

References

  • 1 Apt K. E., Hoffman N. E., Grossman A. R.. The gamma subunit of R-phycoerythrin and its possible mode of transport into the plastid of red algae.  J. Biol. Chem.. (1993);  268 16208-16215
  • 2 Apt K. E., Zaslavkaia L., Lippmeier J. C., Lang M., Kilian O., Wetherbee R., Grossman A. R., Kroth P. G.. In vivo characterization of diatom multipartite plastid targeting signals.  J. Cell Sci.. (2002);  115 4061-4069
  • 3 Bhaya D., Grossman A. R.. Targeting proteins to diatom plastids involves transport through an endoplasmic reticulum.  Mol. Gen. Genet.. (1991);  229 400-404
  • 4 Blanchard J. L., Lynch M.. Organellar genes - why do they end up in the nucleus?.  Trends Genet.. (2000);  16 315-320
  • 5 Bodył A.. How are plastid proteins of the apicomplexan parasites imported? A hypothesis.  Acta Protozool.. (1997);  38 31-37
  • 6 Bodył A.. Is protein import into plastids with four-membrane envelopes dependent on two Toc systems in tandem?.  Plant Biology. (2002);  4 423-431
  • 7 Bouck G. B.. Fine structure and organelle associations in brown algae.  J. Cell Biol.. (1965);  26 523-537
  • 8 Bruce B. D.. Chloroplast transit peptides: structure, function and evolution.  Trends Cell Biol.. (2000);  10 440-447
  • 9 Cavalier-Smith T.. The origins of plastids.  Biol. J. Linn. Soc.. (1982);  17 289-306
  • 10 Cavalier-Smith T.. The kingdom Chromista: origin and systematics. Round, F. E. and Chapman, D. J., eds. Progress in Phycological Research. Bristol; Biopress Ltd. (1986): 309-347
  • 11 Cavalier-Smith T.. Membrane heredity, symbiogenesis, and the multiple origins of algae. Arai, R., Kato, M., and Doi, Y., eds. Biodiversity and Evolution. Tokyo; National Science Museum Foundation (1995): 75-114
  • 12 Cavalier-Smith T.. Principles of protein and lipid targeting in secondary symbiogenesis: euglenoid, dinoflagellate, and sporozoan plastid origins and the eukaryote family tree.  J. Euk. Microbiol.. (1999);  46 347-366
  • 13 Cavalier-Smith T.. Membrane heredity and early chloroplast evolution.  Trends Plant Sci.. (2000);  5 174-182
  • 14 Cavalier-Smith T.. Genomic reduction and evolution of novel genetic membranes and protein-targeting machinery in eukaryote-eukaryote chimaeras (meta-algae).  Phil. Trans. R. Soc. Lond. B.. (2002);  358 109-134
  • 15 Chen X. J., Schnell D. J.. Protein import into chloroplasts.  Trends Cell Biol.. (1999);  9 222-227
  • 16 Delwiche C. F.. Tracing the thread of plastid diversity through the tapestry of life.  Amer. Natural.. (1999);  154 S164-S177
  • 17 Delwiche C. F., Palmer J. D.. The origin of plastids and their spread via secondary symbiosis.  Plant Syst. Evol.. (1997);  11 53-86
  • 18 DeRocher A., Hagen C. B., Froehlich J. E., Feagin J. E., Parsons M.. Analysis of targeting sequences demonstrates that trafficking to the Toxoplasma gondii plastid branches off the secretory system.  J. Cell Sci.. (2000);  113 3969-3977
  • 19 Doolittle W. F.. A paradigm gets shifty.  Nature. (1998);  392 15-16
  • 20 Douglas S. E.. Plastid evolution: origins, diversity, trends.  Curr. Op. Genet. Develop.. (1998);  8 655-661
  • 21 Douglas S., Zauner S., Fraunholz M., Beaton M., Penny S., Deng L.-T., Wu X., Reith M., Cavalier-Smith T., Maier U.-G.. The highly reduced genome of an enslaved algal nucleus.  Nature. (2001);  410 1091-1096
  • 22 Durnford D. G., Deane J. A., Tan S., McFadden G. I., Gantt E., Green B. R.. A phylogenetic assessment of the eukaryotic light-harvesting antenna proteins, with implications for plastid evolution.  J. Mol. Evol.. (1999);  48 59-68
  • 23 Gibbs S. P.. The chloroplasts of Euglena may have evolved from symbiotic green algae.  Can. J. Bot.. (1978);  56 2883-2889
  • 24 Gibbs S. P.. The route of entry of cytoplasmically synthesized proteins into chloroplasts of algae possessing chloroplast ER.  J. Cell Sci.. (1979);  35 253-266
  • 25 Gibbs S. P.. The chloroplast endoplasmic reticulum: structure, function, and evolutionary significance.  Int. Rev. Cytol.. (1981);  72 49-99
  • 26 Gillot M. A., Gibbs S. P.. The cryptomonad nucleomorph: its ultrastructure and evolutionary significance.  J. Phycol.. (1980);  16 558-568
  • 27 Gilson P. R., Maier U. G., McFadden G. I.. Size isn't everything: lessons in gentic miniturization from nucleomorphs.  Curr. Op. Gen. Dev.. (1997);  7 800-806
  • 28 Häuber M. M., Müller S. B., Speth V., Maier U. G.. How to evolve a complex plastid? - A hypothesis.  Bot. Acta. (1994);  107 383-386
  • 29 Heins L., Collinson I., Soll J.. The protein translocation apparatus of chloroplast envelopes.  Trends Plant Sci.. (1998);  3 56-61
  • 30 Heins L., Soll J.. Chloroplast biogenesis: Mixing the prokaryotic and the eukaryotic?.  Curr. Biol.. (1998);  8 R215-R217
  • 31 Heins L., Mehrle A., Hemmler R., Wagner R., Kuchler M., Hormann F., Sveshnikov D., Soll J.. The preprotein conducting channel at the inner envelope membrane of plastids.  EMBO J.. (2002);  21 2616-2625
  • 32 Hopkins J., Fowler R., Krishna S., Wilson I., Mitchell G., Bannister L.. The plastid in Plasmodium falciparum asexual blood stages: a three-dimensional ultrastructural analysis.  Protist. (1999);  150 283-292
  • 33 Inagaki J., Fujita Y., Hase T., Yamamoto Y.. Protein translocation within chloroplast is similar in Euglena and higher plants.  Biochem. Biophys. Res. Commun.. (2000);  277 436-442
  • 34 Ishida K., Cavalier-Smith T., Green B. R.. Endomembrane structure and the chloroplast protein targeting pathway in Heterosigma akashiwo (Raphidophyceae, Chromista).  J. Phycol.. (2000);  36 1135-1144
  • 35 Jakowitsch J., Neumann-Spallart C., Ma Y., Schenk H. E. A., Bohnert H. J., Löffelhardt W.. In vitro import of pre-ferredoxin-NADP-oxidoreductase from Cyanophora paradoxa into cyanelles and into pea chloroplasts.  FEBS Lett.. (1996);  381 153-155
  • 36 Joyard J., Teyssier E., Miege C., Berny-Seigneurin D., Marechal E., Block M. A., Dorne A. J., Rolland N., Ajlani G., Douce R.. The biochemical machinery of plastid envelope membranes.  Plant Physiol.. (1998);  118 715-723
  • 37 Jürgens U. J., Weckesser J.. Carotenoid-containing outer membrane of Synechocystis sp. strain PCC6714.  J. Bacteriol.. (1985);  164 384-389
  • 38 Kadowaki K. I., Kubo N., Ozawa K., Hirai A.. Targeting presequence acquisition after mitochondrial gene transfer to the nucleus occurs by duplication of existing targeting signals.  EMBO J.. (1996);  15 6652-6661
  • 39 Keegstra K., Cline K.. Protein import and routing systems of chloroplasts.  Plant Cell. (1999);  11 557-570
  • 40 Kindle K. L., Lawrence S. D.. Transit peptide mutations that impair in vitro and in vivo chloroplast protein import do not affect accumulation of the gamma-subunit of chloroplast ATPase.  Plant Physiol.. (1998);  116 1179-1190
  • 41 Köhler R. A., Cao J., Zipfel W. R., Webb W. W., Hanson M. R.. Exchange of protein molecules through connections between higher plant plastids.  Science. (1997 a);  276 2039-2042
  • 42 Köhler S., Delwiche C. F., Denny P. W., Tilney L. G., Webster P., Wilson R. J. M., Palmer J. D., Roos D. S.. A plastid of probable green algal origin in apicomplexan parasites.  Science. (1997 b);  275 1485-1489
  • 43 Kroth P., Strotmann H.. Diatom plastids: secondary endocytobiosis, plastid genome and protein import.  Physiol. Plant.. (1999);  107 136-141
  • 44 Lang M., Apt K. E., Kroth P. G.. Protein transport in “complex” diatom plastids utilizes two different targeting domains.  J. Biol. Chem.. (1998);  273 30973-30978
  • 45 Long M., de Souza S. J., Rosenberg C., Gilbert W.. Exon shuffling and the origin of the mitochondrial targeting function in plant cytochrome c1 precursor.  Proc. Natl. Acad. Sci. USA. (1996);  93 7727-7731
  • 46 Martin W., Herrmann R. G.. Gene transfer from organelles to the nucleus: How much, what happens, and why?.  Plant Physiol.. (1998);  118 9-17
  • 47 Martin W., Müller M.. The hydrogen hypothesis for the first eukaryote.  Nature. (1998);  392 37-41
  • 48 Martin W., Stoebe B., Goremykin V., Hansmann S., Hasegawa M., Kowallik K. V.. Gene transfer to the nucleus and the evolution of chloroplasts.  Nature. (1998);  393 162-165
  • 49 McFadden G. I.. Plastids and protein targeting.  J. Euk. Microbiol.. (1999);  46 339-346
  • 50 McFadden G. I.. Primary and secondary endosymbiosis and the origin of plastids.  J. Phycol.. (2001);  37 951-959
  • 51 McFadden G. I., Gilson P. R., Hofmann C. J. B., Adcock G. J., Maier U.-G.. Evidence that an amoeba aquired a chloroplast by retaining part of an engulfed eukaryotic alga.  Proc. Natl. Acad. Sci. USA. (1994);  91 3690-3694
  • 52 McFadden G. I., Roos D. S.. Apicomplexan plastids as drug targets.  Trends Microbiol.. (1999);  7 328-333
  • 53 Melkonian M.. Systematics and evolution of algae.  I. Genomics meets phylogeny. Progr. Botany. (2001);  62 340-382
  • 54 Muchhal U. S., Schwartzbach S. D.. Characterization of a Euglena gene encoding a polyprotein precursor to the light-harvesting chlorophyll a/b-binding protein of photosystem II.  Plant Mol. Biol.. (1992);  18 287-299
  • 55 Palmer J. D.. Organelle genomes: going, going, gone!.  Science. (1997);  275 790-791
  • 56 Park H., Eggink L. L., Roberson R. W., Hoober J. K.. Transfer of proteins from the chloroplast to vacuoles in Chlamydomonas reinhardtii (Chlorophyta): A pathway for degradation.  J. Phycol.. (1999);  35 528-538
  • 57 Rassow J., Pfanner N.. The protein import machinery of the mitochondrial membranes.  Traffic. (2000);  1 457-464
  • 58 Reumann S., Davila-Aponte J., Keegstra K.. The evolutionary origin of the protein-translocating channel of chloroplastidic envelope membranes: identification of a cyanobacterial homolog.  Proc. Natl. Acad. Sci.. (1999);  96 784-789
  • 59 Reumann S., Keegstra K.. The endosymbiotic origin of the protein import machinery of chloroplastic envelope membranes.  Trends Plant Sci.. (1999);  4 302-307
  • 60 Robinson C., Hynds P. J., Robinson D., Mant A.. Multiple pathways for the targeting of thylakoid proteins in chloroplasts.  Plant Mol. Biol.. (1998);  38 209-221
  • 61 Schnepf E.. From prey via endosymbiont to plastid: comparative studies in dinoflagellates. Lewin, R. A., ed. Origins of Plastids. New York; Chapman & Hall (1993): 53-76
  • 62 Schwartzbach S. D., Osafune T., Löffelhardt W.. Protein import into cyanelles and complex chloroplasts.  Plant Mol. Biol.. (1998);  38 247-263
  • 63 Smith-Johannsen H., Gibbs S. P.. Effects of chloramphenicol on chloroplast and mitochondrial ultrastructure in Ochromonas danica. .  J. Cell Biol.. (1972);  52 598-614
  • 64 Steiner J. M., Löffelhardt W.. Protein import into cyanelles.  Trends Plant Sci.. (2002);  7 72-77
  • 65 Su Q., Schumann P., Schild C., Boschetti A.. A processing intermediate of a stromal chloroplast import protein in Chlamydomonas. .  Biochem. J.. (1999);  344 391-395
  • 66 Sulli C., Fang Z. W., Muchhal U. S., Schwartzbach S. D.. Topology of Euglena chloroplast protein precursors within endoplasmic reticulum to golgi to chloroplast transport vesicles.  J. Biol. Chem.. (1999);  274 457-463
  • 67 Vothknecht U. C., Soll J.. Protein import: The hitchhikers guide into chloroplasts.  Biol. Chem.. (2000);  381 887-897
  • 68 Waller R. F., Reed M. B., Cowman A. F., and McFadden G. I.. Protein trafficking to the plastid of Plasmodium falciparum is via the secretory pathway.  EMBO J.. (2000);  19 1794-1802
  • 69 Walter P., Johnson A. E.. Signal sequence recognition and protein targeting to the endoplasmic reticulum membrane.  Annu. Rev. Cell Biol.. (1994);  10 87-119
  • 70 Wastl J., Maier U. G.. Transport of proteins into cryptomonads complex plastids.  J. Biol. Chem.. (2000);  275 23194-23198

P. G. Kroth

Universität Konstanz
Fachbereich Biologie

Postfach M611

78457 Konstanz

Germany

Email: peter.kroth@uni-konstanz.de

Section Editor: G. Thiel

    >