Plant Biol (Stuttg) 2003; 5(4): 393-399
DOI: 10.1055/s-2003-42706
Original Paper

Georg Thieme Verlag Stuttgart · New York

Population Genetics of Indigenous Quercus robur L. Populations and of Derived Half-Sib Families has Implications for the Reproductive Management of the Species

E. G. Bakker 1 , 2 , 3 , B. C. Van Dam 1 , F. A. Van Eeuwijk 2 , E. Jacobsen 2
  • 1Department of Ecology and Environment, Alterra, Wageningen, The Netherlands
  • 2Laboratory of Plant Breeding, Wageningen University, Wageningen, The Netherlands
  • 3Present address: Department of Ecology and Evolution, University of Chicago, Chicago, USA
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
02. Oktober 2003 (online)

Abstract

In the Netherlands indigenous Quercus robur L. populations are rare and have been maintained as patches in ancient woodland. For adequate conservation of these populations, information about genetic variation and population structure is necessary. In order to assess the genetic variation and structure of these populations, microsatellite polymorphisms were studied in two autochthonous populations. These two populations differed slightly for their gene diversity, which was as high as was observed for Q. robur populations in France and Germany. For reforestation purposes there is an interest in the genetic variation of a half-sib family harvested from one tree. The gene diversity of the two studied half-sib families - obtained from a forest and an urban area - was similar, but relatively low. This indicates that, for reforestation purposes, seeds should be harvested from many different trees in order to obtain a population with a genetic variation as high as was observed for an autochthonous population.

References

  • 2 Bakker E. G., Van Dam B. C., Van Eck H. J., Jacobsen E.. The description of clones of Quercus robur L. and Q. petraea (Matt.) Liebl. with microsatellites and AFLP in an ancient woodland.  Plant Biology. (2001);  3 616-621
  • 4 Berg E. E., Hamrick J. L.. Fine-scale genetic structure of a turkey oak forest.  Evolution. (1995);  49 110-120
  • 5 Bodénès C., Labbé T., Pradère S., Kremer A.. Detection of genomic regions differentiating two closely related oak species Quercus petraea (Matt.) Liebl. and Quercus robur L.  Heredity. (1997 a);  78 433-444
  • 6 Bodénès C., Labbé T., Pradère S., Kremer A.. General vs. local differentiation between two closely related white oak species.  Molecular Ecology. (1997 b);  6 713-724
  • 7 Degen B., Streiff R., Ziegenhagen B.. Comparative study of genetic variation and differentiation of two pedunculate oak (Quercus robur) stands using microsatellite and allozyme loci.  Heredity. (1999);  83 597-603
  • 8 Dow B. D., Ashley M. V., Howe H. F.. Characterization of highly variable (GA/CT) n microsatellites in the bur oak, Quercus macrocarpa. .  Theor. Appl. Genet.. (1995);  91 137-141
  • 9 Dow B. D., Ashley M. V.. Microsatellite analysis of seed dispersal and parentage of saplings in bur oak, Quercus macrocarpa. .  Molecular Ecology. (1996);  5 615-627
  • 10 Ducousso A., Michaud H., Lumaret R.. Reproduction and gene flow in the genus Quercus L.  Ann. Sci. For.. (1993);  50 (Suppl. 1) 91s-106s
  • 11 Dumolin-Lapègue S., Demesure B., Fineschi S., Le Corre V., Petit R. J.. Phylogeographic structure of white oaks throughout the European continent.  Genetics. (1997);  146 1475-1487
  • 12 Guo S. W., Thompson E. A.. Performing the exact test of Hardy-Weinberg proportion for multiple alleles.  Biometrics. (1992);  48 361-372
  • 13 Hartl D. L., Clark A. G.. Principles of population genetics, 3rd edn. Sunderland, Massachussetts; Sinauer Associates, Inc. Publishers (1997)
  • 14 Hamrick J. L., Godt M. J. W.. Effects of life history traits on genetic diversity in plant species.  Phil. Trans. R. Soc. Lond. B. (1996);  351 1291-1298
  • 15 Huntley B., Birks H. J. B.. An atlas of past and present pollen maps for Europe, 0 - 13,000 years ago. Cambridge, UK; Cambridge University Press (1983)
  • 16 Kashi Y., King D., Soller M.. Simple sequence repeats as a source of quantitative genetic variation.  Trends in Genetics. (1997);  13 74-78
  • 17 Konig A. O., Ziegenhagen B. C., Van Dam B. C., Csaikl U. M., Coart E., Degen B., Burg K., De Vries S. M. G., Petit R. J.. Chloroplast DNA variation in oak in western central Europe.  Forest Ecology and Management. (2002);  156 147-166
  • 18 Levene H.. On a matching problem arising in genetics.  Annals of Mathematical Statistics. (1949);  20 91-94
  • 19 Loiselle B. A., Sork V. L., Nason J., Graham C.. Spatial genetic structure of a tropical understory shrub, Psychotria officinalis (Rubiaceae).  American Journal of Botany. (1995);  82 1420-1425
  • 20 Maes N. C. M.. Genetische kwaliteit van inheemse bomen en struiken. Deelproject: Randvoorwaarden en knelpunten bij behoud en toepassing van inheems genenmateriaal. Wageningen: IKC-NBLF en IBN-DLO, Rapport nr. 020. (1993)
  • 21 Montalvo A. M., Conard S. G., Thompson Conkle M., Hodgskiss P. D.. Population structure, genetic diversity, and clone formation in Quercus chrysolepis (Fagaceae).  American Journal of Botany. (1997);  84 1553-1564
  • 22 Nei M., Roychoudhury A. K.. Sampling variances of heterozygosity and genetic distance.  Genetics. (1974);  76 379-390
  • 23 Petit R. J., Kremer A., Wagner D. B.. Geographic structure of chloroplast DNA polymorphisms in European oaks.  Theor. Appl. Genet.. (1993);  87 122-128
  • 24 Petit R. J., Pineau E., Demesure B., Bacilieri R., Ducousso A., Kremer A.. Chloroplast DNA footprints of postglacial recolonization by oak.  Proc. Natl. Acad. Sci. USA. (1997);  94 9996-10001
  • 25 Raymond M., Rousset F.. GENEPOP Version 1.2, a population genetics software for exact tests and ecumenicism.  J. Hered.. (1995);  86 248-249
  • 26 Rousset F., Raymond M.. Testing heterozygote excess and deficiency.  Genetics. (1995);  140 1413-1419
  • 27 Rushton B. S.. Quercus robur L. and Quercus petraea (Matt.) Liebl.: a multivariate approach to the hybrid problem, 1. Data acquisition, analysis and interpretation.  Watsonia. (1978);  12 81-101
  • 28 Sokal R. R., Oden N. L.. Spatial autocorrelation in biology. 1.  Methodology. Biological Journal of the Linnean Society. (1978);  10 199-228
  • 29 Steinkellner H., Fluch S., Turetschek E., Lexer C., Streiff R., Kremer A., Burg K., Glössl J.. Identification and characterization of (GA/CT) n -microsatellite loci from Quercus petraea. .  Plant Molecular Biology. (1997);  33 1093-1096
  • 30 Stephan W., Sho S.. Possible role of natural selection in the formation of tandem-repetitive noncoding DNA.  Genetics. (1994);  136 333-341
  • 31 Streiff R., Labbe T., Bacilieri R., Steinkellner H., Glössl J., Kremer A.. Within-population genetic structure in Quercus robur L. and Quercus petraea (Matt.) Liebl. assessed with isozymes and microsatellites.  Molecular Ecology. (1998);  7 317-328
  • 32 Streiff R., Ducousso A., Lexer C., Steinkellner H., Glössl J., Kremer A.. Pollen dispersal inferred from paternity analysis in a mixed oak stand of Quercus robur L. and Q. petraea (Matt.)  Liebl. Molecular Ecology. (1999);  8 831-841
  • 33 Van Dam B., De Vries S.. In de voetsporen van de eik, post-glaciale herkolonisatie routes.  De Levende Natuur. (1998);  99 38-41
  • 34 Van Iterson W.. De historische ontwikkeling van de rechten op de grond in de provincie Utrecht. Dl. 1, Band 2. Inleiding: Markeverhoudingen in het Overkwartier en Eemland. Thesis, Rijksuniversiteit Leiden. Brill. Leiden. (1932)
  • 35 Venner G. H. A.. De Meinweg: onderzoek naar de rechten op gemene gronden in het voormalige Gelders-Gulikse grensgebied, circa 1400 - 1822. Maaslandse monografiën nr. 40. Van Gorcum, Assen. (1985)
  • 36 Weir B. S., Cockerham C. C.. Estimating F-statistics for the analysis of population structure.  Evolution. (1984);  38 1358-1370
  • 37 Westneat D. F., Webster M. S.. Molecular analysis of kinship in birds: interesting questions and useful techniques. (Schierwater, B., Streit, B., Wagner, G. P., and DeSalle, R., eds.) Molecular Ecology and Evolution: Approaches and Applications. Basel; Birkhäuser Verlag (1994): 91-126
  • 38 Zanetto A., Kremer A.. Geographic structure of gene diversity in Quercus petraea (Matt.)  Liebl. I. Monolocus patterns of variation. Heredity. (1995);  75 506-517

E. G. Bakker

Department of Ecology and Evolution
University of Chicago

1101 E. 57th St.

Chicago, IL 60637

USA

eMail: ebakker@uchicago.edu

Section Editor: F. Salamini

    >