Semin Neurol 2003; 23(2): 147-158
DOI: 10.1055/s-2003-41137
Copyright © 2002 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA. Tel.: +1(212) 584-4662

Future Immunotherapies in Multiple Sclerosis

Gregg Blevins1 , Roland Martin1
  • Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
Further Information

Publication History

Publication Date:
01 August 2003 (online)

ABSTRACT

Immunotherapy of multiple sclerosis (MS) will continue to benefit from an increasing understanding of this disease. This knowledge results in newly defined targets for novel therapies. In this article the development of future immunotherapies will be discussed by classifying the approaches into three main types: (1) antigen-specific therapies; (2) agents with a defined target in pathogenic steps of the MS lesion; and (3) therapies with broad immunomodulatory activity. Success in developing new immunotherapies depends on understanding the underlying complexity and heterogeneity of the disease. The current practice of employing a single therapy across a heterogeneous group of MS patients is in part a likely reason for their modest efficacy. The mechanism of action of a single agent may target the appropriate defect in one individual but not others. The therapy of MS in the future will most likely use a combination of agents that are directed at the underlying disease state and stage in the individual patient.

REFERENCES

  • 1 The IFNB Multiple Sclerosis Study Group. Interferon beta-1b is effective in relapsing-remitting multiple sclerosis I: clinical results of a multicenter, randomized, double-blind, placebo-controlled trial.  Neurology . 1993;  43 655-661
  • 2 The INFB Multiple Sclerosis Study Group and The University of British Columbia MS/MRI Analysis Group. Interferon beta-1b in the treatment of multiple sclerosis: final outcome of the randomized controlled trial.  Neurology . 1995;  45 1277-1285
  • 3 Johnson K P, Brooks B R, Cohen J A. et al . Copolymer 1 reduces relapse rate and improves disability in relapsing-remitting multiple sclerosis: results of a phase III multicenter, double-blind placebo-controlled trial. The Copolymer 1 Multiple Sclerosis Study Group.  Neurology . 1995;  45 1268-1276
  • 4 European Study Group on interferon beta-1b in secondary progressive MS. Placebo-controlled multicentre randomised trial of interferon beta-1b in treatment of secondary progressive multiple sclerosis.  Lancet . 1998;  352 1491-1497
  • 5 Goodkin D E, North American Study Group. Interferon beta-1b in secondary progressive MS: clinical and MRI results of a 3-year randomized control trial.  Neurology . 2000;  54 2352
  • 6 SPECTRIMS Study Group. Randomized controlled trial of interferon-beta-1a in secondary progressive MS: clinical results.  Neurology . 2001;  56 1496-1504
  • 7 Johnson K P, Brooks B R, Cohen J A. et al . Extended use of glatiramer acetate (Copaxone) is well tolerated and maintains its clinical effect on multiple sclerosis relapse rate and degree of disability. Copolymer 1 Multiple Sclerosis Study Group.  Neurology . 1998;  50 701-708
  • 8 Teitelbaum D, Meshorer A, Hirshfeld T, Arnon R, Sela M. Suppression of experimental allergic encephalomyelitis by a synthetic polypeptide.  Eur J Immunol . 1971;  1 242-248
  • 9 Moalem G, Leibowitz-Amit R, Yoles E, Mor F, Cohen I R, Schwartz M. Autoimmune T cells protect neurons from secondary degeneration after central nervous system axotomy.  Nat Med . 1999;  5 49-55
  • 10 Ben-Nun A, Wekerle H, Cohen I R. Vaccination against autoimmune encephalomyelitis with T-lymphocyte line cells reactive against myelin basic protein.  Nature . 1981;  292 60-61
  • 11 Lider O, Reshef T, Beraud E, Ben-Nun A, Cohen I R. Anti-idiotypic network induced by T cell vaccination against experimental autoimmune encephalomyelitis.  Science . 1988;  239 181-183
  • 12 Lohse A W, Mor F, Karin N, Cohen I R. Control of experimental autoimmune encephalomyelitis by T cells responding to activated T cells.  Science . 1989;  244 820-822
  • 13 Medaer R, Stinissen P, Truyen L, Raus J, Zhang J. Depletion of myelin-basic-protein autoreactive T cells by T-cell vaccination: pilot trial in multiple sclerosis.  Lancet . 1995;  346 807-808
  • 14 Zhang J, Medaer R, Stinissen P, Hafler D, Raus J. MHC-restricted depletion of human myelin basic protein-reactive T cells by T cell vaccination.  Science . 1993;  261 1451-1454
  • 15 Zhang J Z, Rivera V M, Tejada-Simon M V. et al . T cell vaccination in multiple sclerosis: results of a preliminary study.  J Neurol . 2002;  249 212-218
  • 16 Howell M D, Winters S T, Olee T, Powell H C, Carlo D J, Brostoff S W. Vaccination against experimental allergic encephalomyelitis with T cell receptor peptides.  Science . 1989;  246 668-670
  • 17 Kumar V, Tabibiazar R, Geysen H M, Sercarz E. Immunodominant framework region 3 peptide from TCR V beta 8.2 chain controls murine experimental autoimmune encephalomyelitis.  J Immunol . 1995;  154 1941-1950
  • 18 Morgan E E, Nardo C J, Diveley J P. et al . Vaccination with a CDR2 BV6S2/6S5 peptide in adjuvant induces peptide-specific T-cell responses in patients with multiple sclerosis.  J Neurosci Res . 2001;  64 298-301
  • 19 Killestein J, Olsson T, Wallstrom E. et al . Antibody-mediated suppression of Vbeta5.2/5.3(+) T cells in multiple sclerosis: results from an MRI-monitored phase II clinical trial.  Ann Neurol . 2002;  51 467-474
  • 20 Afshar G, Muraro P A, McFarland H F, Martin R. Lack of over-expression of T cell receptor Vbeta5.2 in myelin basic protein-specific T cell lines derived from HLA-DR2 positive multiple sclerosis patients and controls.  J Neuroimmunol . 1998;  84 7-13
  • 21 Ben-Nun A, Liblau R S, Cohen L. et al . Restricted T-cell receptor V beta gene usage by myelin basic protein-specific T-cell clones in multiple sclerosis: predominant genes vary in individuals.  Proc Natl Acad Sci U S A . 1991;  88 2466-2470
  • 22 Giegerich G, Pette M, Meinl E, Epplen J T, Wekerle H, Hinkkanen A. Diversity of T cell receptor alpha and beta chain genes expressed by human T cells specific for similar myelin basic protein peptide/major histocompatibility complexes.  Eur J Immunol . 1992;  22 753-758
  • 23 Nicholson L B, Greer J M, Sobel R A, Lees M B, Kuchroo V K. An altered peptide ligand mediates immune deviation and prevents autoimmune encephalomyelitis.  Immunity . 1995;  3 397-405
  • 24 Nicholson L B, Murtaza A, Hafler B P, Sette A, Kuchroo V K. A T cell receptor antagonist peptide induces T cells that mediate bystander suppression and prevent autoimmune encephalomyelitis induced with multiple myelin antigens.  Proc Natl Acad Sci U S A . 1997;  94 9279-9284
  • 25 Young D A, Lowe L D, Booth S S. et al . IL-4, IL-10, IL-13, and TGF-beta from an altered peptide ligand-specific TH2 cell clone down-regulate adoptive transfer of experimental autoimmune encephalomyelitis.  J Immunol . 2000;  164 3563-3572
  • 26 Bielekova B, Goodwin B, Richert N. et al . Encephalitogenic potential of the myelin basic protein peptide (amino acids 83-99) in multiple sclerosis: results of a phase II clinical trial with an altered peptide ligand.  Nat Med . 2000;  6 1167-1175
  • 27 Kappos L, Comi G, Panitch H. et al . Induction of a non-encephalitogenic type 2 T helper-cell autoimmune response in multiple sclerosis after administration of an altered peptide ligand in a placebo-controlled, randomized phase II trial. The Altered Peptide Ligand in Relapsing MS Study Group.  Nat Med . 2000;  6 1176-1182
  • 28 Crowe P D, Qin Y, Conlon P J, Antel J P. NBI-5788, an altered MBP83-99 peptide, induces a T-helper 2-like immune response in multiple sclerosis patients.  Ann Neurol . 2000;  48 758-765
  • 29 Chen M, Gran B, Costello K, Johnson K, Martin R, Dhib-Jalbut S. Glatiramer acetate induces a TH2-biased response and crossreactivity with myelin basic protein in patients with MS.  Mult Scler . 2001;  7 209-219
  • 30 Neuhaus O, Farina C, Wekerle H, Hohlfeld R. Mechanisms of action of glatiramer acetate in multiple sclerosis.  Neurology . 2001;  56 702-708
  • 31 Fridkis-Hareli M, Teitelbaum D, Gurevich E. et al . Direct binding of myelin basic protein and synthetic copolymer 1 to class II major histocompatibility complex molecules on living antigen-presenting cells: specificity and promiscuity.  Proc Natl Acad Sci U S A . 1994;  91 4872-4876
  • 32 Ziemssen T, Kumpfel T, Klinkert W E, Neuhaus O, Hohlfeld R. Glatiramer acetate-specific T-helper 1- and 2-type cell lines produce BDNF-implications for multiple sclerosis therapy: brain-derived neurotrophic factor.  Brain . 2002;  125 2381-2391
  • 33 Aharoni R, Teitelbaum D, Arnon R, Sela M. Copolymer 1 acts against the immunodominant epitope 82-100 of myelin basic protein by T cell receptor antagonism in addition to major histocompatibility complex blocking.  Proc Natl Acad Sci U S A . 1999;  96 634-639
  • 34 Fridkis-Hareli M, Santambrogio L, Stern J N, Fugger L, Brosnan C, Strominger J L. Novel synthetic amino acid copolymers that inhibit autoantigen-specific T cell responses and suppress experimental autoimmune encephalomyelitis.  J Clin Invest . 2002;  109 1635-1643
  • 35 Garren H, Ruiz P J, Watkins T A. et al . Combination of gene delivery and DNA vaccination to protect from and reverse TH1 autoimmune disease via deviation to the TH2 pathway.  Immunity . 2001;  15 15-22
  • 36 Vincenti F, Kirkman R, Light S. et al . Interleukin-2-receptor blockade with daclizumab to prevent acute rejection in renal transplantation. Daclizumab Triple Therapy Study Group.  N Engl J Med . 1998;  338 161-165
  • 37 von Andrian H U, Engelhardt B. Alpha4 integrins as therapeutic targets in autoimmune disease.  N Engl J Med . 2003;  348 68-72
  • 38 Tubridy N, Behan P O, Capildeo R. et al . The effect of anti-alpha4 integrin antibody on brain lesion activity in MS. The UK Antegren Study Group.  Neurology . 1999;  53 466-472
  • 39 Miller D H, Khan O A, Sheremata W A. et al . A controlled trial of natalizumab for relapsing multiple sclerosis.  N Engl J Med . 2003;  348 15-23
  • 40 Brundula V, Rewcastle N B, Metz L M, Bernard C C, Yong V W. Targeting leukocyte MMPs and transmigration: minocycline as a potential therapy for multiple sclerosis.  Brain . 2002;  125 1297-1308
  • 41 Essayan D M. Cyclic nucleotide phosphodiesterases.  J Allergy Clin Immunol . 2001;  108 671-680
  • 42 Sommer N, Martin R, McFarland H F. et al . Therapeutic potential of phosphodiesterase type 4 inhibition in chronic autoimmune demyelinating disease.  J Neuroimmunol . 1997;  79 54-61
  • 43 Eigler A, Siegmund B, Emmerich U, Baumann K H, Hartmann G, Endres S. Anti-inflammatory activities of cAMP-elevating agents: enhancement of IL-10 synthesis and concurrent suppression of TNF production.  J Leukoc Biol . 1998;  63 101-107
  • 44 Lacour M, Arrighi J F, Muller K M, Carlberg C, Saurat J H, Hauser C. cAMP up-regulates IL-4 and IL-5 production from activated CD4+ T cells while decreasing IL-2 release and NF-AT induction.  Int Immunol . 1994;  6 1333-1343
  • 45 Ekholm D, Hemmer B, Gao G, Vergelli M, Martin R, Manganiello V. Differential expression of cyclic nucleotide phosphodiesterase 3 and 4 activities in human T cell clones specific for myelin basic protein.  J Immunol . 1997;  159 1520-1529
  • 46 Pette M, Muraro P A, Pette D F, Dinter H, McFarland H F, Martin R. Differential effects of phosphodiesterase type 4-specific inhibition on human autoreactive myelin-specific T cell clones.  J Neuroimmunol . 1999;  98 147-156
  • 47 Bielekova B, Lincoln A, McFarland H, Martin R. Therapeutic potential of phosphodiesterase-4 and -3 inhibitors in TH1-mediated autoimmune diseases.  J Immunol . 2000;  164 1117-1124
  • 48 Sommer N, Loschmann P A, Northoff G H. et al . The antidepressant rolipram suppresses cytokine production and prevents autoimmune encephalomyelitis.  Nat Med . 1995;  1 244-248
  • 49 Rott O, Cash E, Fleischer B. Phosphodiesterase inhibitor pentoxifylline, a selective suppressor of T helper type 1- but not type 2-associated lymphokine production, prevents induction of experimental autoimmune encephalomyelitis in Lewis rats.  Eur J Immunol . 1993;  23 1745-1751
  • 50 Genain C P, Roberts T, Davis R L. et al . Prevention of autoimmune demyelination in non-human primates by a cAMP-specific phosphodiesterase inhibitor.  Proc Natl Acad Sci U S A . 1995;  92 3601-3605
  • 51 Chelmicka-Schorr E, Kwasniewski M N, Thomas B E, Arnason B G. The beta-adrenergic agonist isoproterenol suppresses experimental allergic encephalomyelitis in Lewis rats.  J Neuroimmunol . 1989;  25 203-207
  • 52 Muthyala S, Wiegmann K, Kim D H, Arnason B G, Chelmicka-Schorr E. Experimental allergic encephalomyelitis, beta-adrenergic receptors and interferon gamma-secreting cells in beta-adrenergic agonist-treated rats.  Int J Immunopharmacol . 1995;  17 895-901
  • 53 Makhlouf K, Weiner H L, Khoury S J. Potential of beta2-adrenoceptor agonists as add-on therapy for multiple sclerosis: focus on salbutamol (albuterol).  CNS Drugs . 2002;  16 1-8
  • 54 Kobashigawa J A, Katznelson S, Laks H. et al . Effect of pravastatin on outcomes after cardiac transplantation.  N Engl J Med . 1995;  333 621-627
  • 55 Stanislaus R, Pahan K, Singh A K, Singh I. Amelioration of experimental allergic encephalomyelitis in Lewis rats by lovastatin.  Neurosci Lett . 1999;  269 71-74
  • 56 Youssef S, Stuve O, Patarroyo J C. et al . The HMG-CoA reductase inhibitor, atorvastatin, promotes a TH2 bias and reverses paralysis in central nervous system autoimmune disease.  Nature . 2002;  420 78-84
  • 57 Pahan K, Sheikh F G, Namboodiri A M, Singh I. Lovastatin and phenylacetate inhibit the induction of nitric oxide synthase and cytokines in rat primary astrocytes, microglia, and macrophages.  J Clin Invest . 1997;  100 2671-2679
  • 58 Wong B, Lumma W C, Smith A M, Sisko J T, Wright S D, Cai T Q. Statins suppress THP-1 cell migration and secretion of matrix metalloproteinase 9 by inhibiting geranylgeranylation.  J Leukoc Biol . 2001;  69 959-962
  • 59 Romano M, Diomede L, Sironi M. et al . Inhibition of monocyte chemotactic protein-1 synthesis by statins.  Lab Invest . 2000;  80 1095-1100
  • 60 Weitz-Schmidt G, Welzenbach K, Brinkmann V. et al . Statins selectively inhibit leukocyte function antigen-1 by binding to a novel regulatory integrin site.  Nat Med . 2001;  7 687-692
  • 61 Rodriguez M, Lennon V A. Immunoglobulins promote remyelination in the central nervous system.  Ann Neurol . 1990;  27 12-17
  • 62 van Engelen G B, Miller D J, Pavelko K D, Hommes O R, Rodriguez M. Promotion of remyelination by polyclonal immunoglobulin in Theiler's virus-induced demyelination and in multiple sclerosis.  J Neurol Neurosurg Psychiatry . 1994;  57(suppl) 65-68
  • 63 Rodriguez M, Miller D J, Lennon V A. Immunoglobulins reactive with myelin basic protein promote CNS remyelination.  Neurology . 1996;  46 538-545
  • 64 Asakura K, Miller D J, Pease L R, Rodriguez M. Targeting of IgM kappa antibodies to oligodendrocytes promotes CNS remyelination.  J Neurosci . 1998;  18 7700-7708
  • 65 Noseworthy J H, O'Brien P C, Weinshenker B G. et al . IV immunoglobulin does not reverse established weakness in MS.  Neurology . 2000;  55 1135-1143
  • 66 Noseworthy J H, O'Brien P C, Petterson T M. et al . A randomized trial of intravenous immunoglobulin in inflammatory demyelinating optic neuritis.  Neurology . 2001;  56 1514-1522
  • 67 Paolillo A, Coles A J, Molyneux P D. et al . Quantitative MRI in patients with secondary progressive MS treated with monoclonal antibody Campath 1H.  Neurology . 1999;  53 751-757
  • 68 Coles A J, Wing M, Smith S. et al . Pulsed monoclonal antibody treatment and autoimmune thyroid disease in multiple sclerosis.  Lancet . 1999;  354 1691-1695
  • 69 Noseworthy J H, Wolinsky J S, Lublin F D. et al . Linomide in relapsing and secondary progressive MS-part I: trial design and clinical results. North American Linomide Investigators.  Neurology . 2000;  54 1726-1733
  • 70 Bebo Jr F B, Fyfe-Johnson A, Adlard K, Beam A G, Vandenbark A A, Offner H. Low-dose estrogen therapy ameliorates experimental autoimmune encephalomyelitis in two different inbred mouse strains.  J Immunol . 2001;  166 2080-2089
  • 71 Kim S, Liva S M, Dalal M A, Verity M A, Voskuhl R R. Estriol ameliorates autoimmune demyelinating disease: implications for multiple sclerosis.  Neurology . 1999;  52 1230-1238
  • 72 Sicotte N L, Liva S M, Klutch R. et al . Treatment of multiple sclerosis with the pregnancy hormone estriol.  Ann Neurol . 2002;  52 421-428
    >