Plant Biol (Stuttg) 2003; 5(3): 215-232
DOI: 10.1055/s-2003-40798
Review Article

Georg Thieme Verlag Stuttgart · New York

A Comparison of the Sucrose Transporter Systems of Different Plant Species

C. Kühn 1
  • 1Institut für Pflanzenphysiologie, Humboldt Universität, Berlin, Germany
Further Information

Publication History

Publication Date:
22 July 2003 (online)

Abstract

The sucrose uptake behaviour of many different plant species is characterised by the presence of at least two components with distinct kinetic properties. These include at least one high-affinity and one low-affinity transport system. All known sucrose transporters from higher plants fall into one of three large subfamilies, according to phylogenetic analysis. Apparently, the largest subfamily, the SUT1 subfamily, exclusively consists of high-affinity sucrose transporters from dicotyledons, whereas none of the transporters from monocotyledonous plants groups within this subfamily. The other two subfamilies of sucrose transporter-like proteins are either low-affinity transporter or putative sucrose-sensing proteins. Most of the known sucrose transporters from monocotyledons are closely related to the SUT2 subfamily and include high-affinity transporters, suggesting a different evolutionary origin of dicotyledonous and monocotyledonous sucrose transporter gene families.

References

  • 1 Ageorges A., Issaly R., Picaud S., Delrot S., Romieu C.. Identification and functional expression in yeast of a grape berry sucrose carrier.  Plant Physiology and Biochemistry. (2000);  38 177-185
  • 3 Aoki N., Hirose T., Takahashi S., Ono K., Ishimaru K., Ohsugi R.. Molecular cloning and expression analysis of a gene for a sucrose transporter in maize (Zea mays L.).  Plant And Cell Physiology. (1999);  40 1072-1078
  • 4 Aoki N., Whitfeld P., Hoeren F., Scofield G., Newell K., Patrick J. W., Offler C. E., Clarke B., Rahman S., Furbank R. T.. Three sucrose transporter genes are expressed in the developing grain of hexaploid wheat.  Plant Molecular Biology. (2002);  50 453-462
  • 2 Aoki N., Hirose T., Scofield G. N., Whitfeld P. R., Furbank R. T.. The sucrose transporter gene family in rice.  Plant and Cell Physiology. (2003);  44 223-232
  • 5 Appeldorn N. J. G., De Brujin S. M., Koot Gronsveld E. A. M., Visser R. G. F., Vreugdenhil D., Van Der Plas L. H. W.. Developmental changes of enzymes involved in conversion of sucrose to hexose-phosphate during early tuberisation of potato.  Planta. (1997);  202 220-226
  • 6 Barker L., Kühn C., Weise A., Schulz A., Gebhardt C., Hirner B., Hellmann H., Schulze W., Ward J. M., Frommer W. B.. SUT2, a putative sucrose sensor in sieve elements.  Plant Cell. (2000);  12 1153-1164
  • 111 Barth I., Meyer S., Sauer N.. PmSUC3: Characterization of a SUT2/SUC3-type sucrose transporter from Plantago major. .  Plant Cell. (2003);  15 1375-1385
  • 7 Beebe D., Turgeon R.. Localization of galactinol, raffinose and stachyose synthesis in Cucurbita pepo leaves.  Planta. (1992);  188 354-361
  • 8 Bick J. A., Neelam A., Smith E., Nelson S. J., Hall J. L., Williams L. E.. Expression analysis of a sucrose carrrier in the germinating seedling of Ricinus communis. .  Plant Mol. Biol.. (1998);  38 425-435
  • 9 Boorer K. J., Loo D. D. F., Frommer W. B., Wright E. M.. Transport mechanism of the cloned potato H+/sucrose transporter StSUT1.  Journal of Biological Chemistry. (1996);  271 25139-25144
  • 10 Briskin D., Thornley W., Wyse R.. Membrane transport in isolated vesicles from sugarbeet taproot. II. Evidence for a sucrose/H+-antiport.  Plant Physiology. (1985);  78 871-875
  • 11 Brown C. J., Todd K. M., Rosenzweig R. F.. Multiple duplications of yeast hexose transport genes in response to selection in a glucose-limited environment. Molecular Biology &.  Evolution. (1998);  15 931-942
  • 12 Bürkle L., Hibberd J. M., Quick W. P., Kühn C., Hirner B., Frommer W. B.. The H+-sucrose co-transporter NtSUT1 is essential for sugar export from tobacco leaves.  Plant Physiology. (1998);  118 59-68
  • 13 Cardemil L., Lozada R., Cortes M.. Sucrose uptake and anatomical studies in relation with sucrose uptake of Araucaria Araucana cotelydons. Plant Physiology &.  Biochemistry. (1990);  28 761-772
  • 14 Chiou T. J., Bush D. R.. Molecular cloning, immunochemical localization to the vacuole, and expression in transgenic yeast and tobacco of a putative sugar transporter from sugar beet.  Plant Physiology. (1996);  110 511-520
  • 15 Chiou T. J., Bush D. R.. Sucrose is a signal molecule in assimilate partitioning.  Proceedings of the National Academy of Science of the U.S.A.. (1998);  95 4784-4788
  • 16 Davies C., Wolf T., Robinson S. P.. Three putative sucrose transporters are differentially expressed in grapevine tissues.  Plant Sci.. (1999);  147 93-100
  • 18 Delrot S., Atanassova R., Gomes E., Coutos-Thevenot P.. Plasma membrane transporters: A machinery for uptake of organic solutes and stress resistance.  Plant Science. (2001);  161 391-404
  • 19 Delrot S., Bonnemain J. L.. Involvement of protons as a substrate for the sucrose carrier during phloem loading in Vicia faba leaves.  Plant Physiol.. (1981);  67 560-564
  • 20 Echeverria E., Gonzalez P. C., Brune A.. Characterization of proton and sugar transport at the tonoplast of sweet lime (Citrus limettioides) juice cells.  Physiologia Plantarum. (1997);  101 291-300
  • 21 Eschrich W.. Funktionelle Pflanzenanatomie. Berlin, Heidelberg, New York; Springer (1995)
  • 22 Frommer W. B., Ninnemann O.. Heterologous expression of genes in bacterial, fungal, animal, and plant cells.  Annual Reviews of Plant Physiology and Plant Molecular Biology. (1995);  46 419-444
  • 23 Frommer W. B., Sonnewald U.. Molecular analysis of carbon partitioning in solanaceous species.  Journal of Experimental Botany. (1995);  46 587-607
  • 24 Gahrtz M., Schmelzer E., Stolz J., Sauer N.. Expression of the PmSUC1 sucrose carrier gene from Plantago major L. is induced during seed development.  The Plant Journal. (1996);  9 93-100
  • 25 Gamalei Y. V.. Structure and function of leaf minor veins in trees and herbs. A taxonomic review.  Trees. (1989);  3 96-110
  • 26 Getz H. P.. Sucrose transport in tonoplast vesicles of red beet roots is linked to ATP hydrolysis.  Planta. (1991);  185 261-268
  • 27 Getz H. P., Grosclaude J., Kurkdjian A., Lelièvre F., Maretzki A., Cuern J.. lmmunological evidence for the existence of a carrier protein for sucrose transport in tonoplast vesicles from red beet (Beta vulgaris L.) root storage tissue.  Plant Physiology. (1993);  102 751-760
  • 28 Gillissen B., Bürkle L., André B., Kühn C., Rentsch D., Brandl B., Frommer W. B.. A new family of high affinity transporters for adenine, cytosine and purine derivatives in Arabidopsis. .  The Plant Cell. (2000);  12 291-300
  • 29 Goetz M., Godt D. E., Guivarc'h A., Kahmann U., Chriqui D., Roitsch T.. Induction of male sterility in plants by metabolic engineering of the carbohydrate supply.  Proceedings of the National Academy of Sciences of the United States of America. (2001);  98 6522-6527
  • 30 Gottwald J. R., Krysan P. J., Young J. C., Evert R. F., Sussman M. R.. Genetic evidence for the in planta role of phloem-specific plasma membrane sucrose transporters.  Proc. Natl. Acad. Sci. USA. (2000);  97 13979-13984
  • 31 Haritatos E., Medville R., Turgeon R.. Minor vein structure and sugar transport in Arabidospis thaliana. .  Planta. (2000);  211 105-111
  • 32 Harms K., Wöhner R. V., Schulz B., Frommer W. B.. Regulation of two p-type H+-ATPase genes from potato.  Plant Molecular Biology. (1994);  26 979-988
  • 33 Hellmann H., Barker L., Funck D., Frommer W. B.. The regulation of assimilate allocation and transport.  Aust. J. Plant Physiol.. (2000);  27 583-594
  • 34 Hirose T., Imaizumi N., Scofield G. N., Furbank R. T., Oshugi R.. cDNA cloning and tissue specific expression of a gene for sucrose transporter from rice (Oryza sativa L.).  Plant and Cell Physiology. (1997);  38 1389-1396
  • 35 Ishimaru K., Hirose T., Aoki N., Takahashi S., Ono K., Yamamoto S., Wu J., Saji S., Baba T., Ugaki M., Matsumoto T., Ohsugi R.. Antisense expression of a rice sucrose transporter OsSUT1 in rice (Oryza sativa L.).  Plant Cell Physiol.. (2001);  42 1181-1185
  • 36 Johnsson N., Varshavsky A.. Split-ubiquitin as a sensor of protein interactions in vivo. .  Proc. Natl. Acad. Sci. U.S.A.. (1994);  91 10340-10344
  • 37 Kazuhiro N., Shoji F., Hiroshi K., Yoshiro K., Augustinus S., Takafumi I.. Distinctive distribution of AIM1 polymorphism among major human populations with different skin color.  Journal of Human Genetics. (2002);  47 92-94
  • 38 Khan N. A., Zimmermann F. K., Eaton N. R.. Genetic and biochemical evidence of sucrose fermentation by maltase in yeast.  Molecular and General Genetics. (1973);  123 43-50
  • 39 Knop C., Voitsekhovskaja O., Lohaus G.. Sucrose transporters in two members of the Scrophulariaceae with different types of transport sugar.  Planta. (2001);  213 80-91
  • 40 Komor E., Tanner W.. The hexose-proton cotransport system of Chlorella: pH-dependent change in Km values and translocation constants of the uptake system.  J. Gen. Physiol.. (1974);  64 568-581
  • 41 Kühn C., Barker L., Bürkle L., Frommer W.-B.. Update on sucrose transport in higher plants.  Journal of Experimental Botany. (1999);  50 935-953
  • 42 Kühn C., Franceschi V. R., Schulz A., Lemoine R., Frommer W. B.. Localization and turnover of sucrose transporters in enucleate sieve elements indicate macromolecular trafficking.  Science. (1997);  275 1298-1300
  • 43 Kühn C., Frommer W. B.. The couch potato gene PCP1 from potato enables a sucrose transport deficient yeast strain to grow on sucrose.  Molecular and General Genetics. (1995);  247 759-763
  • 44 Kühn C., Hajirezaei M.-R., Fernie A. R., Hirner B., Roessner U., Czechowski T., Frommer W. B.. The sucrose transporter StSUT1 localizes to sieve elements in potato tuber phloem and influences tuber physiology and development.  Plant Physiology. (2003);  131 102-113
  • 45 Kühn C., Quick W. P., Schulz A., Sonnewald U., Frommer W. B.. Companion cell-specific inhibition of the potato sucrose transporter SUT1.  Plant Cell and Environment. (1996);  19 1115-1123
  • 46 Laloi M., Delrot S., M'Batchi B.. Characterization of sugar efflux from sugar beet leaf plasma membrane vesicles.  Plant Physiology and Biochemistry. (1993);  31 731-741
  • 47 Lalonde S., Boles E., Hellmann H., Barker L., Patrick J. W., Frommer W. B., Ward J. M.. A dual function of sugar carriers in transport and in sugar sensing.  The Plant Cell. (1999);  11 707-726
  • 48 Lemoine R., Bürkle L., Barker L., Sakr S., Kühn C., Regnacq M., Gaillard C., Delrot S., Frommer W. B.. Identification of a pollen-specific sucrose transporter-like protein NtSUT3 from tobacco.  FEBS Letters. (1999);  454 325-330
  • 49 Lemoine R., Kühn C., Thiele N., Delrot S., Frommer W. B.. Antisense inhibition of the sucrose transporter: effects on amount of carrier and sucrose transport activity. Plant Cell &.  Environment. (1996);  19 1124-1131
  • 50 Li Z., Gallet O., Gaillard C., Lemoine R., Delrot S.. The sucrose carrier of the plant plasmalemma.  III. Partial purification and reconstitution of active sucrose transport in liposomes. Biochim. Biophys. Acta. (1992);  1103 259-267
  • 51 Li Z. S., Gallet O., Gaillard C., Lemoine R., Delrot S.. Reconstitution of active sucrose transport in plant proteoliposomes.  FEBS Letters. (1991);  286 117-120
  • 52 Liu X.-Y., Rocha-Sosa M., Hummel S., Willmitzer L., Frommer W. B.. A detailed study of the regulation and evolution of the two classes of patatin genes in Solanum tuberosum .  L. Plant Molecular Biology. (1991);  17 1139-1154
  • 53 Ludwig A., Stolz J., Sauer N.. Plant sucrose-H+ symporters mediate the transport of vitamin H.  The Plant Journal. (2000);  24 503-509
  • 54 Manning K., Davies C., Bowen H. C., White P. J.. Functional characterization of two ripening-related sucrose transporters from grape berries.  Annals of Botany. (2001);  87 125-129
  • 55 Matsukura C., Saitoh T., Hirose T., Ohsugi R., Perata P., Yamaguchi J.. Sugar uptake and transport in rice embryo. Expression of companion cell-specific sucrose transporter (OsSUT1) induced by sugar and light.  Plant Physiology. (2000);  124 85-93
  • 56 Meyer S., Melzer M., Truernit E., Hümmer C., Besenbeck R., Stadler R., Sauer N.. AtSUC3, a gene encoding a new Arabidopsis sucrose transporter, is expressed in cells adjacent to the vascular tissue and in a carpel cell layer.  The Plant Journal. (2000);  24 869-882
  • 57 Milner L. D., Ho L. C., Hall J. L.. Properties of proton and sugar transport at the tonoplast of tomato (Lycopersicon esculentum) fruit.  Physiologia Plantarum. (1995);  94 399-410
  • 58 Noiraud N., Delrot S., Lemoine R.. The sucrose transporter of celery. Identification and expression during salt stress.  Plant Physiology. (2000);  122 1447-1456
  • 59 Noiraud N., Maurousset L., Lemoine R.. Identification of a mannitol transporter, AgMaT1, in celery phloem.  The Plant Cell. (2001);  13 695-705
  • 60 Oparka K. J., Prior D. A. M.. Direct evidence for pressure-generated closure of plasmodesmata.  Plant J.. (1992);  2 741-750
  • 61 Özcan S., Dover J., Johnston M.. Glucose sensing and signaling by two glucose receptors in the yeast Saccharomyces cerevisiae. .  The EMBO Journal. (1998);  17 2566-2573
  • 62 Patrick J.. Hormone Directed Transport of Metabolites. New York; Academic Press (1976)
  • 63 Patrick J.. Turgor-dependent unloading of photosynthates from coats of developing seed of Phaseolus vulgaris and Vicia faba. Turgor homeostasis and set points.  Physiologia Plantarum. (1994);  90 367-377
  • 64 Patrick J.. Phloem unloading: sieve element unloading and post-sieve element transport.  Annual Review of Plant Physiology. (1997);  48 191-222
  • 65 Patrick J. W., Offler C. R.. Post-sieve element transport of sucrose in developing seeds.  Australian Journal of Plant Physiology. (1995);  22 681-702
  • 66 Preisser J., Komor E.. Sucrose uptake into vacuoles of sugarcane suspension cells.  Planta (Heidelberg). (1991);  186 109-114
  • 67 Reinders A., Schulze W., Kühn C., Barker L., Schulz A., Ward J. M. F., Frommer W. B.. Protein-protein interactions between sucrose transporters of different affinities co-localized in the same enucleate sieve element.  The Plant Cell. (2002);  14 1567-1577
  • 68 Reinders A., Ward J. M.. Functional characterization of the alpha-glucoside transporter Sut1p from Schizosaccharomyces pombe, the first fungal homologue of plant sucrose transporters.  Molecular Microbiology. (2001);  39 445-454
  • 69 Riesmeier J., Hirner B., Frommer W. B.. Potato sucrose transporter expression in minor veins indicates a role in phloem loading.  The Plant Cell. (1993);  5 1591-1598
  • 70 Riesmeier J. W., Willmitzer L., Frommer W. B.. Isolation and characterization of a sucrose carrier cDNA from spinach by functional expression in yeast.  The EMBO Journal. (1992);  11 4705-4713
  • 71 Riesmeier J. W., Willmitzer L., Frommer W. B.. Evidence for an essential role of the sucrose transporter in phloem loading and assimilate partitioning.  The EMBO Journal. (1994);  13 1-7
  • 72 Roberts A., Santa-Cruz S., Roberts I. M., Prior D. A. M., Turgeon R., Oparka K. J.. Phloem unloading in sink leaves of Nicotiana benthamiana: Comparison of a fluorescent solute with a fluorescent virus.  The Plant Cell. (1997);  9 1381-1396
  • 73 Roblin G., Sakr S., Bonmort J., Delrot S.. Regulation of a plant plasma membrane sucrose transporter by phosphorylation.  FEBS Lett.. (1998);  424 165-168
  • 74 Rolland F., Moore B., Sheen J.. Sugar sensing and signaling in plants.  Plant Cell. (2002);  14 185-205
  • 75 Rosche E., Blackmore D., Tegeder M., Richardson T., Schroeder H., Higgins T., Frommer W. B., Offler C. E., Patrick J. W.. Seed-specific overexpression if a potato sucrose transporter increases sucrose uptake and growth rates of developing pea cotyledons.  The Plant Journal. (2002);  30 165-175
  • 76 Saftner R., Wyse R.. Alkali cation/sucrose co-transport in the root sink of sugar beet.  Plant Physiology. (1980);  66 884-889
  • 77 Santos E., Rodriguez L., Elorza M. V., Sentandreu R.. Uptake of saccharose by Saccharomyces cerevisiae. Archives of Biochemistry and Biophysics 216. (1982)
  • 78 Sauer N., Stolz J.. SUC1 and SUC2: Two sucrose transporters from Arabidopsis thaliana; expression and characterization in baker's yeast and identification of the histidine tagged protein.  The Plant Journal. (1994);  6 67-77
  • 79 Schulze W., Weise A., Frommer W., Ward J.. Function of the cytosolic N-terminus of sucrose transporter AtSUT2 in substrate affinity.  FEBS Letters. (2000);  485 189-194
  • 80 Shakya R., Sturm A.. Characterization of source- and sink-specific sucrose/H+ symporters from carrot.  Plant Physiology. (1998);  118 1473-1480
  • 81 Shoji F., Atsuko S., Akihiro S.. Mutations in the gene encoding B, a novel transporter protein, reduce melanin content in medaka.  Nature Genetics. (2001);  28 381-385
  • 82 Smeekens S.. Sugar-induced signal transduction in plants. Jones, R. L., Bohnert, H. J., and Delmer, D. P., eds. Annual Review of Plant Physiology & Plant Molecular Biology, Vol. 512000. Palo Alto, USA; Annual Reviews (2000): 49-81
  • 83 Sonnewald U., Hajirezaei M. R., Kossmann J., Heyer A., Trethewey R. N., Willmitzer L.. Increased potato tuber size resulting from expression of a yeast invertase.  Nature Biotechnology. (1997);  15 794-797
  • 84 Stadler R., Besenbeck R., Gahrtz M., Sauer N.. Division of labour: two phloem specific sucrose carriers of Plantago major. In 11th International Workshop on Plant Membrane Biology, Cambridge, UK. (1998)
  • 85 Stadler R., Brandner J., Schulz A., Gahrtz M., Sauer N.. Phloem loading by the PmSUC2 sucrose carrier from Plantago major occurs into companion cells.  The Plant Cell. (1995);  7 1545-1554
  • 86 Stadler R., Sauer N.. The Arabidopsis thaliana AtSUC2 gene is specifically expressed in companion cells.  Botanica Acta. (1996);  109 299-308
  • 87 Stadler R., Truernit E., Gahrtz M., Sauer N.. The AtSUC1 sucrose carrier may represent the osmotic driving force for anther dehiscence and pollen tube growth in Arabidopsis. .  Plant Journal. (1999);  19 269-278
  • 88 Stambuk B., Batista A., De-Araujo P.. Kinetics of active sucrose transport in Saccharomyces cerevisiae. .  Journal of Bioscience and Bioengineering. (2000);  89 212-214
  • 89 Swofford D. L.. PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4. Sunderland, Massachusetts; Sinauer Associates (1998)
  • 90 Taito T., Kyoko T., Chiaki M., Junji Y.. Sugar transporters involved in flowering and grain development of rice.  Journal of Plant Physiology. (2001);  158 465-470
  • 91 Tauberger E., Hoffmann-Benning S., Fleischer-Notter H., Willmitzer L., Fisahn J.. Impact of invertase on cell size, starch granule formation and cell wall properties during tuber development in potatoes with modified carbon allocation patterns.  Journal of Experimental Botany. (1999);  50 477-486
  • 92 Tegeder M., Wang X. D., Frommer W. B., Offler C. E., Patrick J. W.. Sucrose transport into developing seeds of Pisum sativum .  L. The Plant Journal. (1999);  18 151-161
  • 93 Truernit E., Sauer N.. The promoter of the Arabidopsis thaliana SUC2 sucrose-H+ symporter gene directs expression of β-glucuronidase to the phloem: Evidence for phloem loading and unloading by SUC2.  Planta. (1995);  196 564-570
  • 94 van Bel A. J. E.. Strategies of phloem loading.  Annual Reviews of Plant Physiology and Plant Molecular Biology. (1993);  44 253-281
  • 95 van Bel A. J. E., Gamalei Y. V.. Ecophysiology of phloem loading in source leaves. Plant Cell &.  Environment. (1992);  15 265-270
  • 96 Veenhof L. M., Heuberger E. H. M. L., Poolman B.. The lactose transport protein is a cooperative dimer with two sugar translocation pathways.  The EMBO Journal. (2001);  20 3056-3062
  • 97 Veenhof L. M., Heuberger E. H. M. L., Poolman B.. Quaternary structure and function of transport proteins.  Trends in Biochemical Sciences. (2002);  27 242-248
  • 98 Viola R., Roberts A. G., Sophie H., Gazzani S., Hancock R. D., Marmiroli N., Machray G. C., Oparka K. J.. Tuberization in potato involves a switch from apoplastic to symplastic phloem unloading.  The Plant Cell. (2001);  13 385-398
  • 99 Walker N., Zhang W.-H., Harrington G., Holdaway N., Patrick J.. Effluxes of solutes from developing seed coats of Phaseolus vulgaris L. and Vicia faba L.: locating the effect of turgor in a coupled chemiosmotic system.  Journal of Experimental Botany. (2000);  51 1047-1055
  • 100 Wang X. D., Harrington G., Patrick J. W., Offler C. E., Fieuw S.. Cellular pathway of photosynthate transport in coats of developing seed of Vicia faba L. and Phaseolus vulgaris L. II. Principal cellular site(s) of efflux.  Journal of Experimental Botany. (1995);  46 49-63
  • 101 Ward J., Kühn C., Tegeder M., Frommer W. B.. Sucrose transport in higher plants.  International Review of Cytology. (1998);  178 41-71
  • 102 Weber H., Borisjuk L., Heim U., Sauer N., Wobus U.. A role for sugar transporters during seed development: Molecular characterization of a hexose and a sucrose carrier in fava bean seeds.  The Plant Cell. (1997);  9 895-908
  • 103 Weig A., Komor E.. An active sucrose carrier (Scr 1) that is predominantly expressed in the seedling of Ricinus communis .  L. Journal of Plant Physiology. (1996);  147 685-690
  • 104 Weise A., Barker L., Kühn C., Lalonde S., Buschmann H., Frommer W. B., Ward J. M.. A new subfamily of sucrose transporters, SUT4, with low-affinity/high capacity localized in sieve elements of plants.  Plant Cell. (2000);  12 1345-1355
  • 105 Weschke W., Panitz R., Sauer N., Wang Q., Neubohn B., Weber H., Wobus U.. Sucrose transport into barley seeds: molecular characterization of two transporters and implications for seed development and starch accumulation.  Plant Journal. (2000);  21 455-467
  • 106 Wieczorke R., Krampe S., Weierstall T., Freidel K., Hollenberg C. P., Boles E.. Concurrent knock-out of at least 21 transporter genes is required to block uptake of hexoses in Saccharomyces cerevisiae. .  FEBS Letters. (1999);  464 123-128
  • 107 Williams L. E., Lemoine R., Sauer N.. Sugar transporters in higher plants: A diversity of roles and complex regulation.  Trends in Plant Science. (2000);  5 283-290
  • 108 Wright D. P., Scholes J. D., Read D. J., Rolfe S. A.. Changes in carbon allocation and expression of carbon transporter genes in Betula pendula Roth. colonised by the ectomycorrhizal fungus Paxillus involutus. Plant Cell &.  Environment. (2000);  23 39-49
  • 109 Zhou J. J., Theodoulou F., Sauer N., Sanders D., Miller A. J.. A kinetic model with ordered cytoplasmic dissociation for SUC1, an Arabidopsis H+/sucrose cotransporter expressed in Xenopus oocytes.  Journal of Membrane Biology. (1997);  159 113-125
  • 110 Zrenner R., Schüler K., Sonnewald U.. Soluble acid invertase determines the hexose-to-sucrose ratio in cold-stored potato tubers.  Planta. (1996);  198 246-252

C. Kühn

Institut für Pflanzenphysiologie
Humboldt Universität

Philippstraße 13, Haus 12

10115 Berlin

Germany

Email: christina.kuehn@biologie.hu-berlin.de

Section Editor: G. Gottsberger