J Reconstr Microsurg 2003; 19(4): 241-248
DOI: 10.1055/s-2003-40580
Copyright © 2003 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA. Tel.: +1(212) 584-4662

Recovery of Muscle Contractile Function Following Nerve Gap Repair with Chemically Acellularized Peripheral Nerve Grafts

Steven C. Haase1 , Jason M. Rovak2 , Robert G. Dennis1,3 , William M. Kuzon, Jr.1,3 , Paul S. Cederna1,3
  • 1Department of Surgery, Section of Plastic Surgery, University of Michigan Health Systems, Ann Arbor, MI
  • 2Duke University Medical School, Durham, NC
  • 3Institute of Gerontology, University of Michigan Health Systems, Ann Arbor, MI
Further Information

Publication History

Publication Date:
14 July 2003 (online)

ABSTRACT

Acellular nerve grafts have emerged as a possible alternative for reconstruction of short (<2 cm) peripheral nerve gaps. Axonal regeneration has been demonstrated within the nerve constructs. However, very little work has been done to demonstrate both axonal regeneration and recovery of motor function following peripheral nerve gap repair with acellular nerve constructs. The authors hypothesized that chemically acellularized nerve grafts can support axonal regeneration and provide functional reinnervation of rat hindlimb muscles with equivalent efficiency to peripheral nerve autografts. Peroneal nerves were harvested from adult rats and chemically acellularized. Two- and 4-cm peroneal nerve gaps were reconstructed with either a cellular autograft or an acellular isograft. Functional recovery was evaluated with walking-track analyses and measurement of maximum tetanic isometric force (F0) of the extensor digitorum longus (EDL) muscle. Walking-track analysis revealed no statistically significant difference in functional recovery in rats undergoing reconstruction of 2-cm nerve gaps with acellular isografts or cellular autografts. Maximum tetanic isometric force measurements revealed a 60 percent force deficit in EDL muscles reinnervated by 2-cm acellular nerve grafts, compared to cellular autografts. Four-centimeter acellular grafts failed to support any significant EDL muscle reinnervation. This study demonstrates that chemically acellularized peripheral nerve supports axonal regeneration and functional reinnervation across 2-cm nerve gaps, and may potentially serve as an appropriate scaffold for reintroducing cellular elements, adhesion molecules, or growth factors for repair of longer nerve gaps.

REFERENCES

  • 1 Evans P J, Midha R, Mackinnon S E. The peripheral nerve allograft: a comprehensive review of regeneration and neuroimmunology.  Prog Neurobiol . 1994;  43 187
  • 2 Meek M F, Coert J H. Clinical use of nerve conduits in peripheral-nerve repair: review of the literature.  J Reconstr Microsurg . 2002;  18 97
  • 3 Strauch B. Use of nerve conduits in peripheral nerve repair.  Hand Clinics . 2000;  16 123
  • 4 Mackinnon S E, Dellon A L. Clinical nerve reconstruction with bioabsorbable polyglycolic acid tube.  Plast Reconstr Surg . 1990;  85 419
  • 5 Weber R A, Breidenbach W C, Brown R E. et al . A randomized prospective study of polyglycolic acid conduits for digital nerve reconstruction in humans.  Plast Reconstr Surg . 2000;  106 1036
  • 6 Matsumoto K, Ohnishi K, Sekine T. et al . Use of a newly developed artificial nerve conduit to assist peripheral nerve regeneration across a long gap in dogs.  ASAIO Journal . 2000;  46 415
  • 7 Hall S. Axonal regeneration through acellular muscle grafts.  J Anat . 1997;  190 57
  • 8 Fansa H, Keilhoff G, Plogmeier K. et al . Successful implantation of Schwann cells in acellular muscles.  J Reconstr Microsurg . 1999;  15 61
  • 9 Chen L E, Seaber A V, Urbaniak J R, Murrell G A. Denatured muscle as a nerve conduit: a functional, morphologic, and electrophysiologic evaluation.  J Reconstr Microsurg . 1994;  10 137
  • 10 Zhang F, Blain B, Beck J. et al . Autogenous venous graft with one-stage prepared Schwann cells as a conduit for repair of long segmental nerve defects.  J Reconstr Microsurg . 2002;  18 295
  • 11 Mligiliche N, Tabata Y, Endoh K, Ide C. Peripheral nerve regeneration through a long detergent-denatured muscle autografts in rabbits.  NeuroReport . 2001;  12 1719
  • 12 Gulati A K. Immune response and neurotrophic factor interactions in peripheral nerve transplants.  Acta Haematol . 1998;  99 171
  • 13 Rodriguez F J, Verdu E, Ceballow D, Navarro X. Nerve guides seeded with autologous Schwann cells improve nerve regeneration.  Exp Neurol . 2000;  161 571
  • 14 Sondell M, Lundborg G, Kanje M. Regeneration of the rat sciatic nerve into allografts made acellular through chemical extraction.  Brain Res . 1998;  795 44
  • 15 Bunge M B, Clark M B, Dean A C. et al . Schwann cell function depends upon axonal signals and basal lamina components.  Ann NY Acad Sci . 1990;  580 281
  • 16 Reynolds J L, Urbancheck M S, Asato H, et. al.  Deletion of individual muscles alters rat walking-track parameters. J Reconstr Microsurg . 1996;  12 461
  • 17 Brooks S V, Faulkner J A, McCubbrey D A. Power outputs of slow and fast skeletal muscles of mice.  J Appl Physiol . 1990;  68 1282
  • 18 Brooks S V, Faulkner J A. Maximum and sustained power of extensor digitorum longus muscles from young, adult, and old mice.  J Gerontol . 1991;  46 B28
  • 19 Cote C, Faulkner J A. Motor unit function in skeletal muscle autografts of rats.  Exp Neurol . 1984;  84 292
  • 20 Faulkner J A, Niemeyer J H, Maxwell L C, White T P. Contractile properties of transplanted extensor digitorum longus muscles of cats.  Am J Physiol . 1980;  238 C120
  • 21 Gans C. Fiber architecture and muscle function.  Exer Sport Sci Rev . 1982;  10 160
  • 22 Mendez J, Keys A. Density and composition of mammalian muscle.  Metabolism . 1960;  9 1984
  • 23 Yoshimura K, Asato H, Cederna P S. et al . The effect of reinnervation on force production and power output in skeletal muscle.  J Surg Res . 1999;  81 201
  • 24 Rosenblatt J, Kuzon W, Plyley M. et al . A histochemical method for the simultaneous demonstration of capillaries and fiber type in skeletal muscle.  Stain Technol . 1988;  62 263
  • 25 Kuzon W M, Rosenblatt J, Pynn B. et al . Fiber type morphometry and capillary geometry in free, vascularized muscle transfers.  Microsurgery . 1991;  12 352
  • 26 Brooke M H, Kaiser K K. Muscle fiber types: how many and what kind?.  Arch Neurol . 1970;  23 369
  • 27 Kramer H, Windrum G M. The metachromatic staining reaction.  J Histochem . 1955;  3 227
  • 28 Gulati A K, Rai D R, Ayman M A. The influence of cultured Schwann cells on regeneration through acellular basal lamina grafts.  Brain Res . 1995;  705 118
  • 29 Ogden M A, Feng F Y, Myckatyn TM., e t. al.  Safe injection of cultured Schwann cells into peripheral nerve allografts. Microsurgery . 2000;  20 314
    >