Exp Clin Endocrinol Diabetes 2003; 111(1): 16-20
DOI: 10.1055/s-2003-37495
Article

J. A. Barth Verlag in Georg Thieme Verlag Stuttgart · New York

The HIV Protease Inhibitor Indinavir Impairs Glycogen Synthesis in HepG2 Hepatoma Cells

M. Schütt[*] 1 , M. Meier[*] 1 , M. M. Jost 1 , H. H. Klein 1
  • 1Department of Internal Medicine I, University of Lübeck, Germany
Further Information

Publication History

Received: March 12, 2002 First decision: June 30, 2002

Accepted: September 8, 2002

Publication Date:
26 February 2003 (online)

Abstract

HIV protease inhibitor treatment is associated with insulin resistance. We have recently demonstrated that the HIV protease inhibitor indinavir influences initial insulin signaling steps in HepG2 cells. Here we investigated in the same cell model whether indinavir alters insulin-stimulated glycogen synthesis. Since an altered phosphotyrosine phosphatase activity could represent a mechanism by which insulin signaling is influenced, we also assessed potential indinavir effects on protein tyrosine phosphatase activity directed against tyrosine phosphorylated insulin receptor substrate-1. HepG2 cells were incubated for 48 h without or with indinavir (100 µmol/l). Subsequently, the insulin-stimulated incorporation of 14C-glucose into glycogen was measured. In indinavir-treated cells the insulin effect on glycogen synthesis was reduced by 30 ± 4.5 %. Dephosphorylation of immobilized tyrosine-phosphorylated insulin-receptor substrate-1 by the cell extracts was determined using a microwell plate-based method, and indinavir treatment did not alter this dephosphorylation. In conclusion, our data suggest that indinavir affects insulin-stimulation of glycogen synthesis in liver cells, and this may be related to the previously observed alterations in insulin signaling. Direct effects of indinavir on the GLUT4 transport system, that have been suggested from data in other cell systems, are unlikely in HepG2 cells that express no or almost no GLUT4 transport system. Finally, our data do not support the hypothesis that indinavir alters insulin signaling by influencing protein tyrosine phosphatase activity directed against insulin receptor substrate-1.

References

  • 1 Ali M S, Schieffer B, Delafontaine P, Bernstein K E, Ling B N, Marrero M B. Angiotensin II stimulates tyrosine phosphorylation and activation of insulin receptor substrate 1 and protein-tyrosine phosphatase 1 D in vascular smooth muscle cells.  J Biol Chem. 1997;  272 12373-12379
  • 2 Basu A, Basu R, Shah P, Vella A, Johnson C M, Jensen M, Nair K S, Schwenk W F, Rizza R A. Effects of type 2 diabetes on the ability of insulin and glucose to regulate splanchnic and muscle glucose metabolism: evidence for a defect in hepatic glucokinase activity.  Diabetes. 2000;  49 272-283
  • 3 Berrish T S, Hetherington C S, Alberti K G, Walker M. Peripheral and hepatic insulin sensitivity in subjects with impaired glucose tolerance.  Diabetologia. 1995;  38 699-704
  • 4 Caron M, Auclair M, Vigouroux C, Glorian M, Forest C, Capeau J. The HIV protease inhibitor indinavir impairs sterol regulatory element-binding protein-1 intranuclear localization, inhibits preadipocyte differentiation, and induces insulin resistance.  Diabetes. 2001;  50 1378-1388
  • 5 Carr A, Samaras K, Burton S, Law M, Freund J, Chisholm D J, Cooper D A. A syndrome of peripheral liodystrophy, hyperlipidaemia and insulin resistance in patients receiving HIV protease inhibitors.  AIDS. 1998;  12 F51-F58
  • 6 Cline G W, Rothman D L, Magnusson I, Katz L D, Shulman G I. 13C-nuclear magnetic resonance spectroscopy studies of hepatic glucose metabolism in normal subjects and subjects with insulin-dependent diabetes.  J Clin Invest. 1994;  94 2369-2376
  • 7 Daneshi S, Schwarzloh B, Hennings N, Hamann A, Hansen-Algenstaedt N, Greten H, Algenstaedt P. The effect of HIV-1 protease inhibitors on upstream insulin signaling.  Diabetologia. 2000;  43 (Suppl) A625
  • 8 Egawa K, Maegawa H, Shimizu S, Morino K, Nishio Y, Bryer-Ash M, Cheung A T, Kolls J K, Kikkawa R, Kashiwagi A. Protein-tyrosine phosphatase-1 B negatively regulates insulin signaling in l6 myocytes and Fao hepatoma cells.  J Biol Chem. 2001;  276 10207-10211
  • 9 Elchebly M, Cheng A, Tremblay M L. Modulation of insulin signaling by protein tyrosine phosphatases.  J Mol Med. 2000;  78 473-482
  • 10 Elchebly M, Payette P, Michaliszyn E, Cromlish W, Collins S, Loy A L, Normandin D, Cheng A, Himms-Hagen J, Chan C C, Ramachandran C, Gresser M J, Tremblay M L, Kennedy B P. Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1 B gene.  Science. 1999;  283 1544-1548
  • 11 Flexner C. HIV-protease inhibitors.  N Engl J Med. 1998;  338 1281-1292
  • 12 Groop L, Schalin C, Franssila-Kallunki A, Widen E, Ekstrand A, Eriksson J. Characteristics of non-insulin-dependent diabetic patients with secondary failure to oral antidiabetic therapy.  Am J Med. 1989;  87 183-190
  • 13 Hah J, Jo I, Chakrabarti R, Jung C Y. Demonstration of an insulin-insensitive storage pool of glucose transporters in rat hepatocytes and HepG2 cells.  J Cell Physiol. 1992;  152 56-63
  • 14 Hofmann C, Marsh J W, Miller B, Steiner D F. Cultured hepatoma cells as a model system for studying insulin processing and biologic responsiveness.  Diabetes. 1980;  29 865-874
  • 15 Inoue G, Cheatham B, Emkey R, Kahn C R. Dynamics of insulin signaling in 3T3-L1 adipocytes.  J Biol Chem. 1998;  273 11548-11555
  • 16 Kim J W, Ahn Y H. CCAAT/enhancer binding protein regulates the promoter activity of the rat GLUT2 glucose transporter gene in liver cells.  Biochem J. 1998;  336 83-90
  • 17 Kim S J. Insulin rapidly induces nuclear translocation of PI3-kinase in HepG2 cells.  Biochem Mol Biol Int. 1998;  46 187-196
  • 18 Kim Y B, Zhu J S, Zierath J R, Shen H Q, Baron A D, Kahn B B. Glucosamin infusion in rats rapidly impairs insulin stimulation of phosphoinositide 3-kinase but does not alter activation of Akt/protein kinase B in skeletal muscle.  Diabetes. 1999;  48 310-320
  • 19 Klein H H, Kowalewski B, Drenckhan M, Fehm H L. Insulin stimulation of human adipocytes activates the kinase of only a fraction of the insulin receptors.  Am J Physiol. 1997;  272 E576-E583
  • 20 Krützfeld J, Grünweller A, Raasch W, Drenckhan M, Klein H H. Microtiter well assay for protein tyrosine phosphatase activities directed against phosphorylated insulin receptor or insulin receptor substrate-1.  Anal Biochem. 1999;  271 97-99
  • 21 Lenhard J M, Croom D K, Weiel J E, Winegar D A. HIV protease inhibitors stimulate hepatic triglyceride synthesis.  Arterioscler Thromb Vasc Biol. 2000;  20 2625-2629
  • 22 Magnusson I, Rothman D L, Katz L D, Shulman R G, Shulman G I. Increased rate of gluconeogenesis in type II diabetes mellitus. A 13C nuclear magnetic resonance study.  J Clin Invest. 1992;  90 1323-1327
  • 23 Meyer M M, Schütt M, Jost P, Meier M, Klein H H. Indinavir decreases insulin-stimulated phosphatidylinositol 3-kinase activity and stimulates leptin secretion in human adipocytes.  Diabetes. 2001;  (Suppl) 1722
  • 24 Murata H, Hruz P W, Mueckler M. The mechanism of insulin resistance caused by HIV protease inhibitor therapy.  J Biol Chem. 2000;  275 20251-20254
  • 25 Nolte L A, Yarasheski K E, Kawanaka K, Fisher J, Le N, Holloszy J O. The HIV protease inhibitor indinavir decreases insulin- and contraction-stimulated glucose transport in skeletal muscle.  Diabetes. 2001;  50 1397-1401
  • 26 Noor M A, Seneviratne T, Aweeka F T, Lo J C, Schwarz J M, Mulligan K, Schambelan M, Grunfeld C. Indinavir acutely inhibits insulin-stimulated glucose disposal in humans: a randomized, placebo-controlled study.  AIDS. 2002;  16 F1-8
  • 27 Peak M, Rochford J J, Borthwick A C, Yeaman S J, Agius L. Signalling pathways involved in the stimulation of glycogen synthesis by insulin in rat hepatocytes.  Diabetologia. 1998;  41 16-25
  • 28 Riddle T M, Kuhel D G, Woollett L A, Fichtenbaum C J, Hui D Y. HIV protease inhibitor induces fatty acid and sterol biosynthesis in liver and adipose tissues due to the accumulation of activated sterol regulatory element-binding proteins in the nucleus.  J Biol Chem. 2001;  276 37514-37519
  • 29 Rudich A, Vanounou S, Riesenberg K, Porat M, Tirosh A, Harman-Boehm I, Greenberg A S, Schlaeffer F, Bashan N. The HIV protease inhibitor nelfinavir induces insulin resistance and increases basal lipolysis in 3T3-L1 adipocytes.  Diabetes. 2001;  50 1425-1431
  • 30 Schütt M, Meier M, Meyer M, Klein J, Aries S P, Klein H H. Indinavir decreases insulin-signaling in Hepatoma G2 cells.  Diabetologia. 2000;  43 1145-1148
  • 31 Staehr P, Hother-Nielsen O, Levin K, Holst J J, Beck-Nielsen H. Assessment of hepatic insulin action in obese type 2 diabetic patients.  Diabetes. 2001;  50 1363-1370
  • 32 Stein J H, Klein M A, Bellehumeur J L, McBride P E, Wiebe D A, Otvos J D, Sosman J M. Use of human immunodeficiency virus-1 protease inhibitors is associated with atherogenic lipoprotein changes and endothelial dysfunction.  Circulation. 2001;  17 257-262
  • 33 Syed N A, Khandelwal R L. Reciprocal regulation of glycogen phosphorylase and glycogen synthase by insulin involving phosphatidylinositol-3 kinase and protein phosphatase-1 in HepG2 cells.  Mol Cell Biochem. 2000;  211 123-136
  • 34 Tang S, Le-Tien H, Goldstein B J, Shin P, Lai R, Fantus I G. Decreased in situ insulin receptor dephosphorylation in hyperglycemia-induced insulin resistance in rat adipocytes.  Diabetes. 2001;  50 83-90
  • 35 Tappy L. Regulation of hepatic glucose production in healthy subjects and patients with non-insulin-dependent diabetes mellitus.  Diabet Metab. 1995;  21 233-240
  • 36 Thorens B, Sarkar H K, Kaback H R, Lodish H F. Cloning and functional expression in bacteria of a novel glucose transporter present in liver, intestine, kidney, and beta-pancreatic islet cells.  Cell. 1988;  55 281-290
  • 37 Ueki K, Yamamoto-Honda R, Kaburagi Y, Yamauchi T, Tobe K, Burgering B M, Coffer P J, Komuro I, Akanuma Y, Yazaki Y, Kadowaki T. Potential role of protein kinase B in insulin-induced glucose transport, glycogen synthesis, and protein synthesis.  J Biol Chem. 1998;  273 5315-5322
  • 38 VanRenterghem B, Morin M, Czech M P, Heller-Harrison R A. Interaction of insulin receptor substrate-1 with the sigma3 A subunit of the adaptor protein complex-3 in cultured adipocytes.  J Biol Chem. 1998;  273 29942-29949
  • 39 Velho G, Petersen K F, Perseghin G, Hwang J H, Rothman D L, Pueyo M E, Cline G W, Froguel P, Shulman G I. Impaired hepatic glycogen synthesis in glucokinase-deficient (MODY-2) subjects.  J Clin Invest. 1996;  98 1755-1761
  • 40 Virkamäki A, Ueki K, Kahn C R. Protein-protein interaction in insulin signalling and the molecular mechanisms of insulin resistance.  J Clin Invest. 1999;  103 931-943
  • 41 Walli R, Herfort O, Michl G M, Demant T, Jager H, Dieterle C, Bogner J R, Landgraf R, Goebel F D. Treatment with protease inhibitors associated with peripheral insulin resistance and impaired oral glucose tolerance in HIV-1-infected patients.  AIDS. 1998;  12 167-173

1 * These authors contributed equally to this work

Dr. M. Schütt

Department of Internal Medicine I
Medical University of Lübeck

Ratzeburger Allee 160

23538 Lübeck

Germany

Phone: +49/4515006407

Fax: +49/4515006483

Email: morten.schuett@web.de

    >