J Reconstr Microsurg 2002; 18(8): 689-696
DOI: 10.1055/s-2002-36501
Copyright © 2002 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA. Tel.: +1(212) 584-4662

Microvascular Protection Induced by Late Preconditioning Was Abolished in STZ-Induced Acute Diabetic Rats

Wei Z. Wang, Seth Jones, Linda L. Stepheson, Kayvan T. Khiabani, William A. Zamboni
  • Division of Plastic Surgery, Department of Surgery, University of Nevada School of Medicine, Las Vegas, NV
Further Information

Publication History

Publication Date:
13 January 2003 (online)

ABSTRACT

The authors attempted to determine whether ischemic preconditioning (IPC) can provide microvascular protection in skeletal muscle of diabetic rats against injury from a subsequent (24 hr later) prolonged period of ischemia and reperfusion. Male Sprague Dawley rats weighting 80 to 100 g were injected intraperitoneally with either streptozotocin (STZ, 65 mg/kg) or vehicle (sodium citrate, pH 4.5). Rats with a fasting blood glucose level over 300 mg/dl 1 week after injection of STZ were considered acute diabetic. The cremaster muscle of the rats underwent 45 min of IPC and 24 hr later, 4 hr of warm ischemia followed by reperfusion (I/R). Four groups were compared: IPC in normal rats (n=8); sham IPC in normal rats (n=8); IPC in diabetic rats (n=6); and sham IPC in diabetic rats (n=4). Microvascular responses in the cremaster muscle to IPC were determined by measuring the diameter of feeding, terminal arterioles and capillary perfusion using intravital microscopy, and by the evaluation of the endothelium-dependent nitric oxide system in the terminal arterioles.

The average diameter of the feeding and terminal arterioles, as well as capillary perfusion, were significantly decreased in diabetic animals, compared to normal animals. There was a significant endothelial dysfunction detected in the terminal arterioles of diabetic rats. Ischemic preconditioning provided significant microvascular protection against prolonged ischemia/reperfusion in normal rats, but not in diabetic rats. IPC-induced microvascular protection in the normal skeletal muscle was abolished in STZ-induced acute diabetic rats.

REFERENCES

  • 1 Williamson J R, Kilo C, Tilton R G. Mechanisms of glucose- and diabetes-induced vascular dysfunction. In: Ruderman N, Williamson J, Brownlee M, et al (eds). Hyperglycemia, Diabetes, and Vascular Disease Oxford: Oxford University Press 1992: 107-131
  • 2 Stehouwer C DA, Lambert J, Donker A JM, Hinsbergh V WM. Endothelial dysfunction and pathogenesis of diabetic angiopathy.  Cardiovas Res . 1997;  34 55-68
  • 3 Tesfamariam B, Brown M L, Deykin D, Cohen R. Elevated glucose promotes generation of endothelium-derived vasoconstrictor prostanoid in rabbit aorta.  J Clin Invest . 1990;  85 929-932
  • 4 Meraji A, Jayakody L, Senaratne P. Endothelium-dependent relaxation in aorta of BB rats.  Diabetes . 1987;  36 878-881
  • 5 Oyama Y, Kawasaki H, Harttori Y, Kanno M. Attenuation of endothelium-dependent relaxation in aorta from diabetic rats.  Eur J Pharmacol . 1986;  132 75-78
  • 6 Saens D TI, Goldstein I, Azadzol K. Impaired neurogenic and endothelium-dependent relaxation of human penile smooth muscle: the pathophysiological basis for impotence in diabetes mellitus.  N Engl J Med. . 1989;  320 1025-1030
  • 7 Brothers T E, Robison J G, Elliott B M. Diabetes mellitus is the major risk factor for African Americans who undergo peripheral bypass graft operation.  J Vasc Surg . 1999;  29 352-359
  • 8 Murry C E, Jennings R B, Reimer K A. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium.  Circulation . 1986;  74 1124-1136
  • 9 Marber M S, Latchman D S, Walker J M, Yellon D M. Cardiac stress protein elevation 24 hours after brief ischemia or late stress is associated with resistance to myocardial infarction.  Circulation . 1993;  88 1264-1272
  • 10 Yellon D M, Baxter G F, Garcia-Dorado D. Ischemic preconditionig: present and future directions.  Cardiovasc Res . 1998;  37 21-33
  • 11 Cohen M V, Liu G S, Downey J M. Preconditioning causes improved wall motion as well as smaller infarcts after transient coronary occlusion in rabbit.  Circulation . 1991;  84 341-349
  • 12 Pang C Y, Yang R Z, Zhong A. Acute ischemic preconditioning protects against skeletal muscle infarction in the pig.  Cardiovasc Res . 1995;  29 782-788
  • 13 Richard V, Kaeffer N, Tron C, Thuillez C. Ischemic preconditioning protects against coronary endothelial dysfunction induced by ischemia and reperfusion.  Circulation . 1994;  89 1254-1261
  • 14 Defily D V, Chilian W M. Preconditioning protects cornary microvascular endothelial function.  Am J Physiology . 1993;  265(2 pt 2) H700-6
  • 15 Peralta C, Hotter G, Closa D. The protective role of adenosine in inducing nitric oxide synthesis in rat liver ischemia preconditioning is mediated by activation of adenosine A2 receptors.  Hepatology . 1999;  29 126-132
  • 16 Hotter G, Closa D, Prados M. Intestinal preconditioning is mediated by a transient increase in nitric oxide.  Biochem Biophys Res Commun . 1996;  222 27-32
  • 17 Wang W Z, Anderson G L, Maldonado C, Barker J. Attenuation of vasospasm and capillary no-reflow by ischemic preconditioning in skeletal muscle.  Microsurgery . 1996;  17 324-329
  • 18 Wang W Z, Anderson G L, Firrell J C, Tsai T M. Ischemic preconditioning versus intermittent reperfusion to improve blood flow to a vascular isolated skeletal muscle flap of rats.  J Trauma . 1998;  45 953-959
  • 19 Wang W Z, Anderson G, Guo S Z. The initiation of microvascular protection by nitric oxide in the late preconditioning phase.  J Reconstr Microsurg . 2000;  16 621-628
  • 20 Wang W Z, Tsai T M, Anderson G L. Late preconditioning protection is evident in the microcirculation of denervated skeletal muscle.  J Orthop Res . 1999;  17 571-577
  • 21 Wang W Z, Anderson G, Guo S Z, Miller F N. The initiating factors of late preconditioning in skeletal muscle.  J Surg Res . 2001;  99 92-99
  • 22 Wang W Z, Stepheson L L, Anderson G L. Role of PKC in the late phase of microvascular protection induced by preconditioning.  J Surg Res . 2002;  106 166-172
  • 23 Lee Y H, Wei F C, Lee J, Su M S. Microcirculatory changes following reperfusion insult in diabetic rat skeletal muscles.  Microsurgery . 2000;  20 77-84
  • 24 Kersten J R, Schmeling T J, Orth K G. Acute hyperglycemia abolishes ischemic preconditioning in vivo.  Am J Physiol Heart Circ Physiol . 1998;  275 H721-H725
  • 25 Kersten J R, Toller W G, Gross E R. Diabetes abolishes ischemic preconditioning: role of glucose, insulin, and osmolality.  Am J Physiol Heart Circ Physiol . 2000;  278 H1218-1224
  • 26 Panes J, Kurose I, Rodriguez-Vaca D. Diabetes exacerbates inflammatory responses to ischemia-reperfusion.  Circulation . 1996;  93 161-167
  • 27 Partamian J O, Bradley R F. Acute myocardial infarction in 258 cases of diabetes.  N Engl J Med . 1965;  273 455-461
  • 28 Hokama J Y, Ritter L S, Davis-Gorman G. Diabetes enhances leukocyte accumulation in the coronary microcirculation early in reperfusion following ischemia.  J Diabetes Complication . 2000;  14 96-107
  • 29 Salas A, Panes J, Rosenbloom C L. Differential effects of a nitric oxide donor on reperfusion-induced microvascular dysfunction in diabetic and non-diabetic rats.  Diabetologia . 1999;  42 1350-1358
  • 30 Paulson D J. The diabetic heart is more sensitive to ischemic injury.  Cardiovasc Res . 1997;  34 104-112
  • 31 Bolli R, Dawn B, Tang X-L. The nitric oxide hypothesis of late preconditioning.  Basic Res Cardiol . 1998;  93 325-339
  • 32 Jerome S N, Akimitsu T, Gute D, Korthuis R J. Ischemic preconditioning attenuates capillary no-reflow induced by prolonged ischemia and reperfusion.  Am J Physiol. 1995;  268(Heart Circ Physiol 37) H2063-H2067
  • 33 Lee H T, Schroeder C A, Shah P M. Preconditioning with ischemia or adenosine protects skeletal muscle from ischemic tissue reperfusion injury.  J Surg Res . 1996;  63 29-34
  • 34 Menger M D, Rucker M, Vollmar B. Capillary dysfunction in striated muscle ischemia/reperfusion: on the mechanisms of capillary ``no-reflow''.  Shock . 1997;  8 2-7
  • 35 Ames A, Wright R L, Kowada M. Cerebral ischemia. II. The no-reflow phenomenon.  Am J Pathol . 1968;  52 437-453
  • 36 Hardy S C, Homer-Vanniasinkam S, Gough M J. The triphasic pattern of skeletal muscle blood flow in reperfusion injury: an experimental model with implications for surgery on the acutely ischemic lower limb.  Eur Vasc Surg . 1990;  4 587-90
  • 37 Korthuis R J, Granger D N, Townsley M I, Taylor A E. The role of oxygen-derived free radicals in ischemia-induced increase in canine skeletal muscle vascular permeability.  Cir Res . 1988;  57 599-609
  • 38 Wang W Z, Anderson G L, Firrell J C. Arteriole constriction following ischemia in denervated skeletal muscle.  J Reconstr Microsurg . 1995;  11 99-106
  • 39 Wang W Z, Anderson G, Fleming J T. Lack of nitric oxide contributes to vasospasm during ischemia/reperfusion injury.  Plast Reconstr Surg . 1997;  99 1099-1108
  • 40 Wang W Z, Anderson G, Acland R D, Barker J. Endothelin-1 does not contribute to ischemia/reperfusion-induced vasoconstriction in skeletal muscle.  J Reconstr Microsurg . 1997;  13 439-447
  • 41 Wang W Z, Guo S Z, Tsai T M. PAF contributes to vasospasm after prolonged ischemia in skeletal muscle.  J Surg Res . 2000;  89 139-146
  • 42 Bouchard J F, Lamontagne D. Protection afforded by preconditioning to the diabetic heart against ischemic injury.  Cardiovasc Res . 1998;  37 82-90
  • 43 Tatsumi T, Matoba S, Kobara M. Energy metabolism after ischemic preconditioning in streptozotocin-induced diabetic rat hearts.  J Am Coll Cardiol . 1998;  31 707-715
  • 44 Tosaki A, Pali T, Lefaix D. Effects of ginkgo biloba extract and preconditioning on the diabetic rat myocardium.  Diabetologia . 1996;  39 1255-1262
    >