Plant Biol (Stuttg) 2002; 4(5): 647-654
DOI: 10.1055/s-2002-35437
Original Paper
Georg Thieme Verlag Stuttgart ·New York

Herbivore-Mediated Competition between Defended and Undefended Plant Species: A Model to Investigate Consequences of Climate Change

C. F. Dormann 1,2
  • 1 Department of Plant and Soil Science, University of Aberdeen, St. Machar Drive, Aberdeen AB24 3UU Scotland, U.K.
  • 2 Centre of Ecology and Hydrology, Banchory, Scotland, U.K.
Further Information

Publication History

Received: August 22, 2001

Accepted: July 29, 2002

Publication Date:
15 November 2002 (online)

Abstract

Optimal levels of anti-herbivore defence are determined not only by grazing pressure on the target plant, but also by the efficiency of the defence and by competitive interactions with neighbours. In the high Arctic on Svalbard, grazing by reindeer is a process that can be modelled without plant-to-herbivore feedback, as reindeer population sizes are not correlated with plant growth. However, growing conditions are extreme: a short season and low temperatures inhibit optimal growth. Therefore, it is possible to model anti-herbivore defence in competition in this system, assess how its optimum depends on grazing intensity and defence efficiency, and, finally, how global climate change will effect plant-plant interactions. This model, based on a Lotka-Volterra type competition and temperature-dependent growth, indicates that competition is of considerable importance even in extreme environments. Herbivory mediates displacement of the defended plant by releasing it from competition. This process is more pronounced under high grazing pressure than under low pressure. In other words, competition potentially magnifies the effect of herbivory. Elevated temperatures and a longer growing season have no qualitative impact on these processes, as the dominant defended plant profits most.

References

  • 01 Aanes,  R.,, Sæther,  B. E.,, and Øritsland,  N. A.. (2000);  Fluctuations of an introduced population of Svalbard reindeer: the effects of density dependence and climatic variation.  Ecography. 23 437-443
  • 02 Begon,  M.,, Harper,  J. L.,, and Townsend,  C. R.. (1990) Ecology. Cambridge; Blackwell
  • 03 Bryant,  J. P.,, Chapin,  F. S.,, and Klein,  D. R.. (1983);  Carbon/nutrient balance of boreal plants in relation to vertebrate herbivory.  Oikos. 40 357-368
  • 04 Chesson,  P., and Huntly,  N.. (1997);  The roles of harsh and fluctuating conditions in the dynamics of ecological communities.  American Naturalist. 150 519-553
  • 05 Coley,  P. D.,, Bryant,  J. P.,, and Chapin,  F. S.. (1985);  Resource availability and plant antiherbivore defense.  Science. 230 895-899
  • 06 De Jong,  T. J.. (1995);  Why fast-growing plants do not bother about defense.  Oikos. 74 545-548
  • 07 Dormann,  C. F.,, Van der Wal,  R.,, and Bakker,  J. P.. (2000);  Competition and herbivory intensity during salt-marsh succession: the importance of forb growth strategy.  Journal of Ecology. 88 571-583
  • 08 Dormann,  C. F.. (2002);  Facilitation and competition in the high Arctic: the importance of experimental approach.  Acta Oecologica. in press
  • 09 Dormann,  C. F., and Skarpe,  C.. (2002);  Flowering, growth and defence in the two sexes: consequences of herbivore exclusion on Salix polaris.  Functional Ecology. 16 649-656
  • 10 Dormann,  C. F.. (2001) Global change, herbivory and Arctic plants. University of Aberdeen; PhD thesis
  • 11 Feeny,  P.. (1976);  Plant apparency and chemical defense.  Recent Advances in Phytochemistry. 10 1-40
  • 12 Grace,  J. B.. (1995);  On the measurement of plant competition intensity.  Ecology. 76 305-308
  • 13 Grime,  J. P.. (1979) Plant Strategies and Vegetation Processes. Chichester; John Wiley
  • 14 Herms,  D. A., and Mattson,  W. J.. (1992);  The dilemma of plants: to grow or defend.  The Quarterly Review of Biology. 67 283-335
  • 15 Irvine,  R. J.,, Stien,  A.,, Halvorsen,  O.,, Langvatn,  R.,, and Albon,  S. D.. (1999);  Life-history strategies and population dynamics of abomasal nematodes in Svalbard reindeer (Rangifer tarandus platyrhynchus). .  Parasitology. 120 297-311
  • 16 Langvatn,  R.,, Albon,  S. D.,, Irvine,  R. J.,, Halvorsen,  O.,, and Ropstad,  E.. (1999) Parasitter, kondisjon og reproduksjon hos svalbardrein. Svalbardtundraens Økologi. Bengtson, S. A., Mehlum, F., and Sverinsen, R., eds. Tromsø; Norsk Polarinstitutt pp. 139-148
  • 17 Lee,  S. E.,, Press,  M. C.,, Lee,  J. A.,, Ingold,  T.,, and Kurttila,  T.. (2000);  Regional effects of climate change on reindeer: a case study of the Muotkatunturi region in Finnish Lapland.  Polar Research. 19 99-105
  • 18 Loreau,  M., and deMazancourt,  C.. (1999);  Should plants in resource-poor environments invest more in antiherbivore defence?.  Oikos. 87 195-200
  • 19 Markham,  J. H., and Chanway,  C. P.. (1996);  Measuring plant neighbour effects.  Functional Ecology. 10 548-549
  • 20 Reader,  R. J.. (1992);  Herbivory as a confounding factor in an experiment measuring competition among plants.  Ecology. 73 373-374
  • 21 Tyler,  N.,, and Øritsland,  N. A.. (1999) Varig ustabilitet og bestandsregulering hos svalbardrein. Svalbardtundraens Økologi. Bengtson, S. A., Mehlum, F., and Sverinsen, R., eds. Tromsø; Norsk Polarinstitutt pp. 125-138
  • 22 Van der Meijden,  E.,, Wijn,  M.,, and Verkaar,  H. J.. (1988);  Defence and regrowth, alternative plant strategies in the struggle against herbivores.  Oikos. 51 355-363
  • 23 Van der Wal,  R.,, Irvine,  J.,, Stien,  A.,, Shepherd,  N.,, and Albon,  S. D.. (2000);  Faecal avoidance and the risk of infection by nematodes in a natural population of reindeer.  Oecologia. 124 19-25
  • 24 Van der Wal,  R.,, Madan,  N.,, van Lieshout,  S.,, Dormann,  C. F.,, Langvatn,  R.,, and Albon,  S. D.. (2000);  Plant phenology and the selection of Arctic swards by reindeer: Trading forage quality for quantity?.  Oecologia. 123 108-115

C. F. Dormann

Applied Landscape Ecology
Umweltforschungszentrum Leipzig-Halle

Permoser Str. 15
04318 Leipzig
Germany

Email: dormann@alok.ufz.de

Section Editor: G. Gottsberger

    >