Laryngorhinootologie 2002; 81(7): 491-498
DOI: 10.1055/s-2002-33286
Rhinologie
© Georg Thieme Verlag Stuttgart · New York

Die eosinophile Entzündung der Nasenschleimhaut

Eosinophil Inflammation of the Nasal MucosaG.  Rasp1
  • 1Klinik und Poliklinik für Hals-, Nasen-, Ohrenkranke der Ludwig-Maximilians-Universität München
Meinem Lehrer, Herrn Prof. Dr. med. Ernst Kastenbauer zum 65. Geburtstag gewidmet.
Further Information

Publication History

Eingegangen: 18. Februar 2002

Angenommen: 23. April 2002

Publication Date:
12 August 2002 (online)

Zusammenfassung

Einleitung: Entzündliche Erkrankungen sind die häufigsten Erkrankungen und damit auch wesentlich bei den häufigsten Todesursachen beteiligt. Im HNO-Bereich stellen neben den viralen bakteriellen Entzündungen vor allem die eosinophilen Entzündungen der Atemwege ein Problem dar. Sie sind das wesentliche pathologische Substrat bei der allergischen Rhinitis, dem Asthma bronchiale, der Polyposis nasi, der chronischen Sinusitis und bei einer großen Zahl ungeklärter Rhinitiden wie der nichtallergischen eosinophilen Rhinitis. In der vorliegenden Übersicht werden die Grundlagen der eosinophilen Entzündung beschrieben.

Methoden und Ergebnisse: Die Zellen reifen im Knochenmark unter dem Einfluss von IL-5 und Eotaxin heran, werden durch deren Zytokinbefehle mobilisiert und mittels Adhäsion spezifisch ins Gewebe geschleust. Die Adhäsion findet unter dem Einfluss von VCAM-1 und anderen statt. Im Gewebe werden sie dann durch verschiedene Stimuli wie Immunglobulinrezeptoren und IL-5 aktiviert, setzen Mediatoren und Zytokine frei und bewirken weitere entzündliche Veränderungen. Die Folgen der Aktivierung mit ihren multiplen Mediatoren sind dann die klinischen Symptome im Organ und hier ist es vor allem die Spätphase der Typ-1-Reaktion und die weiter gehende entzündliche Infiltration. Die klinische Relevanz steigt noch durch die Interaktionen mit Viren und die Effekte auf muskarinerge Synapsen. Diagnostisch lässt sich die eosinophile Entzündung lokal mit der Messung von kationischen Proteinen durchführen.

Zusammenfassung: Somit sind auch die heutigen und zukünftige therapeutischen Ansätze von besonderer Relevanz. Die gängige Therapie besteht in der lokalen und auch systemischen Steroidgabe, positive Effekte lassen sich auch mit Antikörpern gegen Interleukin 5 und 4 erzielen, auch Anti-IgE scheint eine Wirkung zu zeigen.

Abstract

Introduction: Inflammatory diseases are very frequent and cause reasonable mortality. They are the major part in upper airway diseases in ENT. Eosinophil inflammation is a key feature in allergic rhinitis, asthma, nasal polyps and non-allergic rhinitis. The mechanism and the consequences of eosinophil inflammation are described in this review.

Methods and Results: Eosinophils mature in bone marrow, mainly under the influence of IL-5 and eotaxin. Once mobilised to circulation, they accumulate in inflammatory sites by specific adhesion. VCAM-1 and other adhesion molecules are involved in this process. In the tissue, eosinophils get activated by different stimuli like immunoglobulin receptors and cytokines like IL-5. Activated eosinophils release toxic proteins, mediators and cytokines and thus trigger further inflammatory response. This leads to the late phase reaction and continuing inflammatory reaction. Eosinophils also interact with virus infections and have effects on nerve endings with the M2 receptor.

Conclusions: Eosinophil inflammation may be monitored via the determination of cationic proteins in nasal secretions. Corticosteroids are very effective in the treatment of eosinophil inflammation, and anti-IL-5 and anti-IL-4 antibodies seem to be effective, too.

Literatur

  • 1 Bronchial asthma. Fact sheet No. 206, December 1998. Available at: http://www.who.int/inf-fs/en/fact206.html. Accessed December 23, 1999. 
  • 2 Sehmi R, Wood L J, Watson R, Foley R, Hamid Q, O'Byrne P M. et al . Allergen-induced increases in IL-5 receptor-subunit expression on bone marrow-derived CD34+ cells from asthmatic subjects: a novel marker of progenitor cell commitment towards eosinophilic differentiation.  J Clin Invest. 1997;  100 2466-2475
  • 3 Yoshida T, Ikuta K, Sugaya H, Maki K, Takagi M, Kanazawa H. et al . Defective B-1 cell development and impaired immunity against Angiostrongylus cantonensis in IL-5R-deficient mice.  Immunity. 1996;  4 483-494
  • 4 Nishinakamura R, Miyajima A, Mee P J, Tybulewicz V LJ, Murray R. Hematopoiesis in mice lacking the entire granulocyte-macrophage colony-stimulating factor/interleukin-3/interleukin-5 functions.  Blood. 1996;  88 2458-2464
  • 5 Plager D A, Loegering D A, Weiler D A, Checkel J L, Wagner J M, Clarke N J. et al . A novel and highly divergent homolog of human eosinophil granule major basic protein.  J Biol Chem. 1999;  274 14 464-14 473
  • 6 Popken-Harris P, McGrogan M, Loegering D A, Checkel J L, Kubo H, Thomas L L. et al . Expression, purification, and characterization of the recombinant proform of eosinophil granule major basic protein.  J Immunol. 1995;  155 1472-1480
  • 7 Palframan R T, Collins P D, Severs N J, Rothery S, Williams T J, Rankin S M. Mechanisms of acute eosinophil mobilization from the bone marrow stimulated by interleukin 5: the role of specific adhesion molecules and phosphatidylinositol 3-kinase.  J Exp Med. 1998;  188 1621-1632
  • 8 Palframan R T, Collins P D, Williams T J, Rankin S M. Eotaxin induces a rapid release of eosinophils and their progenitors from the bone marrow.  Blood. 1998;  91 2240-2248
  • 9 Kim Y K, Uno M, Hamilos D L, Beck L, Bochner B, Schleimer R. et al . Immunolocalization of CD34 in nasal polyposis: effect of topical corticosteroids.  Am J Respir Cell Mol Biol. 1999;  20 388-397
  • 10 Dobrina A, Menegazzi R, Carlos T M, Nardon E, Cramer R, Zacchi T. et al . Mechanisms of eosinophil adherence to cultured vascular endothelial cells: eosinophils bind to the cytokine-induced ligand vascular cell adhesion molecule-1 via the very late activation antigen-4 integrin receptor.  J Clin Invest. 1991;  88 20-26
  • 11 Bochner B S, Luscinskas F W, Gimbrone M A Jr, Newman W, Sterbinsky S A, Derse-Anthony C P. et al . Adhesion of human basophils, eosinophils, and neutrophils to interleukin 1-activated human vascular endothelial cells: contributions of endothelial cell adhesion molecules.  J Exp Med. 1991;  173 1553-1557
  • 12 Hickey M J, Granger D N, Kubes P. Molecular mechanisms underlying IL-4-induced leukocyte recruitment in vivo: a critical role for the α4 integrin.  J Immunol. 1999;  163 3441-3448
  • 13 Ulfman L H, Kuijper P HM, van der Linden J AM, Lammers J WJ, Zwaginga J J, Koenderman L. Characterization of eosinophil adhesion to TNF-α-activated endothelium under flow conditions: α4 integrins mediate initial attachment, and E-selectin mediates rolling.  J Immunol. 1999;  163 343-350
  • 14 Daffern P J, Pfeifer P H, Ember J A, Hugli T E. C3a is a chemotaxin for human eosinophils but not for neutrophils, I: C3a stimulation of neutrophils is secondary to eosinophil activation.  J Exp Med. 1995;  181 2119-2127
  • 15 Jose P J, Griffiths-Johnson D A, Collins P D, Walsh D T, Moqbel R, Totty N F. et al . Eotaxin: a potent eosinophil chemoattractant cytokine detected in a guinea pig model of allergic airways inflammation.  J Exp Med. 1994;  179 881-887
  • 16 Kato M, Kephart G M, Talley N J, Wagner J M, Sarr M G, Bonno M. et al . Eosinophil infiltration and degranulation in normal human tissue.  Anat Rec. 1998;  252 418-425
  • 17 Garcia-Zepeda E A, Rothenberg M E, Ownbey R T, Celestin J, Leder P, Luster A D. Human eotaxin is a specific chemoattractant for eosinophil cells and provides a new mechanism to explain tissue eosinophilia.  Nat Med. 1996;  2 449-456
  • 18 Lilly C M, Nakamura H, Kesselman H, Nagler-Anderson C, Asano K, Garcia-Zepeda E A. et al . Expression of eotaxin by human lung epithelial cells: induction by cytokines and inhibition by glucocorticoids.  J Clin Invest. 1997;  99 1767-1773
  • 19 Lamkhioued B, Renzi P M, Abi-Younes S, Garcia-Zepada E A, Allakhverdi Z, Ghaffar O. et al . Increased expression of eotaxin in bronchoalveolar lavage and airways of asthmatics contributes to the chemotaxis of eosinophils to the site of inflammation.  J Immunol. 1997;  159 4593-4601
  • 20 Teran L M, Mochizuki M, Bartels J, Valencia E L, Nakajima T, Hirai K. et al . Th1- and Th2-type cytokines regulate the expression and production of eotaxin and RANTES by human lung fibroblasts.  Am J Respir Cell Mol Biol. 1999;  20 777-786
  • 21 Mochizuki M, Bartels J, Mallet A I, Christophers E, Schroder J M. IL-4 induces eotaxin: a possible mechanism of selective eosinophil recruitment in helminth infection and atopy.  J Immunol. 1998;  160 60-68
  • 22 Li L, Xia Y, Nguyen A, Lai Y H, Feng L, Mossman T R. et al . Effects of Th2 cytokines on chemokine expression in the lung: IL-13 potently induces eotaxin expression by airway epithelial cells.  J Immunol. 1999;  162 2477-2487
  • 23 White J R, Imburgia C, Dul E, Appelbaum E, O'Donnell K, O'Shannessy D J. et al . Cloning and functional characterization of a novel human CC chemokine that binds to the CCR3 receptor and activates human eosinophils.  J Leukoc Biol. 1997;  62 667-675
  • 24 Ohno I, Ohtani H, Nitta Y, Suzuki J, Hoshi H, Honma M. et al . Eosinophils as a source of matrix metalloproteinase-9 in asthmatic airway inflammation.  Am J Respir Cell Mol Biol. 1997;  16 212-219
  • 25 Okada S, Kita H, George T J, Gleich G J, Leiferman K M. Transmigration of eosinophils through basement membrane components in vitro: synergistic effects of platelet-activating factor and eosinophil-active cytokines.  Am J Respir Cell Mol Biol. 1997;  16 455-463
  • 26 Kumagai K, Ohno I, Okada S, Ohkawara Y, Suzuki K, Shinya T. et al . Inhibition of matrix metalloproteinases prevents allergen-induced airway inflammation in a murine model of asthma.  J Immunol. 1999;  162 4212-4219
  • 27 Kim J T, Schimming A W, Kita H. Ligation of FcRII (CD32) pivotally regulates survival of human eosinophils.  J Immunol. 1999;  162 4253-4259
  • 28 Motegi Y, Kita H. Interaction with secretory component stimulates effector functions of human eosinophils but not of neutrophils.  J Immunol. 1998;  161 4340-4346
  • 29 Nagata M, Sedgwick J B, Kita H, Busse W W. Granulocyte macrophage colony-stimulating factor augments ICAM-1 and VCAM-1 activation of eosinophil function.  Am J Respir Cell Mol Biol. 1998;  19 158-166
  • 30 Bartemes K R, McKinney S, Gleich G J, Kita H. Endogenous platelet-activating factor is critically involved in effector functions of eosinophils stimulated with IL-5 or IgG.  J Immunol. 1999;  162 2982-2989
  • 31 Hozawa S, Haruta Y, Ishioka S, Yamakido M. Effects of a PAF antagonist, Y-24 180, on bronchial hyperresponsiveness in patients with asthma.  Am J Respir Crit Care Med. 1995;  152 1198-1202
  • 32 Frigas E, Loegering D A, Solley G O, Farrow G M, Gleich G J. Elevated levels of the eosinophil granule major basic protein in the sputum of patients with bronchial asthma.  Mayo Clin Proc. 1981;  56 345-353
  • 33 Minnicozzi M, Durán W N, Gleich G J, Egan R W. Eosinophil granule proteins increase microvascular macromolecular transport in the hamster cheek pouch.  J Immunol. 1994;  153 2664-2670
  • 34 Gleich G J, Adolphson C R. The eosinophil and bronchial asthma: evidence for a critical role of eosinophils in pathophysiology. In: Sanderson CJ (Ed) Interleukin-5: from molecule to drug target for asthma. Vol 125. New York; Marcel Dekker 1998: 1-37
  • 35 Wardlaw A J, Dunnette S, Gleich G J, Collins J V, Kay A B. Eosinophils and mast cells in bronchoalveolar lavage in subjects with mild asthma: relationship to bronchial hyperreactivity.  Am Rev Respir Dis. 1988;  137 62-69
  • 36 Gundel R H, Letts L G, Gleich G J. Human eosinophil major basic protein induces airway constriction and airway hyperresponsiveness in primates.  J Clin Invest. 1991;  87 1470-1473
  • 37 Elbon C L, Jacoby D B, Fryer A D. Pretreatment with an antibody to IL-5 preserves the function of pulmonary M2 muscarinic receptors in antigen challenged guinea-pigs.  Am J Respir Cell Mol Biol. 1995;  12 320-328
  • 38 Jacoby D B, Gleich G J, Fryer A D. Human eosinophil major basic protein is an endogenous allosteric antagonist at the inhibitory muscarinic M2 receptor.  J Clin Invest. 1993;  91 1314-1318
  • 39 Fryer A D, Jacoby D B. Function of pulmonary M2 muscarinic receptors in antigen-challenged guinea pigs is restored by heparin and poly-L-glutamate.  J Clin Invest. 1992;  90 2292-2298
  • 40 Lefort J, Nahori M A, Ruffie C, Vargaftig B B, Pretolani M. In vivo neutralization of eosinophil-derived major basic protein inhibits antigen-induced bronchial hyperreactivity in sensitized guinea pigs.  J Clin Invest. 1996;  97 1117-1121
  • 41 Calhoun W J, Dick E, Schwartz L B, Busse W W. A common cold virus, rhinovirus 16, potentiates airway inflammation after segmental antigen bronchoprovocation in allergic subjects.  J Clin Invest. 1994;  94 2200-2208
  • 42 Schwarze J, Hamelmann E, Bradley K L, Takeda K, Gelfand E W. Respiratory syncytial virus infection results in airway hyperresponsiveness and enhanced airway sensitization to allergen.  J Clin Invest. 1997;  100 226-233
  • 43 Slifman N R, Loegering D A, McKean D J, Gleich G J. Ribonuclease activity associated with human eosinophil-derived neurotoxin and eosinophil cationic protein.  J Immunol. 1986;  137 2913-2917
  • 44 Hamann K J, Barker R L, Loegering D A, Pease L R, Gleich G J. Sequence of human eosinophil-derived neurotoxin cDNA: identity of deduced amino acid sequence with human nonsecretory ribonucleases.  Gene. 1989;  83 161-167
  • 45 Hamann K J, Ten R M, Loegering D A, Jenkins R B, Heise M T, Schad C R. et al . Structure and chromosome localization of the human eosinophil-derived neurotoxin and eosinophil cationic protein genes: evidence for intronless coding sequences in the ribonuclease gene superfamily.  Genomics. 1990;  7 535-546
  • 46 Rosenberg H F, Dyer K D, Tiffany H L, Gonzalez M. Rapid evolution of a unique family of primate ribonuclease genes.  Nat Genet. 1995;  10 219-223
  • 47 Domachowske J B, Dyer K D, Bonville C A, Rosenberg H F. Recombinant human eosinophil-derived neurotoxin/RNase 2 functions as an effective antiviral agent against respiratory syncytial virus.  J Infect Dis. 1998;  177 1458-1464
  • 48 Saito T, Deskin R W, Casola A, Haeberle H, Olszewska B, Ernst P B. et al . Respiratory syncytial virus induced selective production of the chemokine RANTES by upper airway epithelial cells.  J Infect Dis. 1997;  175 497-504
  • 49 Garofalo R, Kimpen J LL, Welliver R C, Ogra P L. Eosinophil degranulation in the respiratory tract during naturally acquired respiratory syncytial virus infection.  J Pediatr. 1992;  120 28-32
  • 50 Heppt W. Zytologie und Histologie der Nasenschleimhaut. In: Heppt W, Bachert C Praktische Allergologie. Stuttgart; Thieme 1998: 80
  • 51 Rasp G, Thomas P A, Bujia J. Eosinophil inflammation of the nasal mucosa in allergic and non-allergic rhinitis measured by eosinophil cationic protein levels in native nasal fluid and serum.  Clin Exp Allergy. 1994;  24 1151-1156
  • 52 Klimek L, Rasp G. Norm values for eosinophil cationic protein in nasal secretions: influence of specimen collection.  Clin Exp Allergy. 1999;  29 367-374
  • 53 Barker R L, Gundel R H, Gleich G J, Checkel J L, Loegering D A, Pease L R. et al . Acidic polyamino acids inhibit human eosinophil granule major basic protein toxicity: evidence of a functional role for proMBP.  J Clin Invest. 1991;  88 798-805
  • 54 Milgrom H, Frick R B Jr, Su J Q, Reimann J D, Bush R K, Watrous M L. et al . Treatment of allergic asthma with monoclonal anti-IgE antibody.  N Engl J Med. 1999;  341 1966-1973
  • 55 Butterfield J H, Gleich G J. Interferon-treatment of six patients with the idiopathic hypereosinophilic syndrome.  Ann Intern Med. 1994;  121 648-653
  • 56 Klimek L, Rasp G. Klinisches Monitoring der Entzündungsreaktion in der HNO. In: Kapp A, Klimek L, Werfel T Allergische Entzündungen. Stuttgart; Thieme 2002: 125-140

Priv.-Doz. Dr. Gerd Rasp

Klinik und Poliklinik für Hals-, Nasen-, Ohrenkranke der Ludwig-Maximilians-Universität München · Klinikum Großhadern

Marchioninistraße 15 · 81366 München

Email: Rasp@hno.med.uni-muenchen.de

    >