Synthesis 2002(7): 0928-0936
DOI: 10.1055/s-2002-28504
SPECIALTOPIC
© Georg Thieme Verlag Stuttgart · New York

NbCl5: A Novel Lewis Acid in Allylation Reactions

Carlos Kleber Z. Andrade*, Neucírio R. Azevedo, Guilherme R. Oliveira
Instituto de Química, Universidade de Brasília, C.P. 4478, 70910-970, Brasília, DF, Brazil
Fax: +55(61)2734149; e-Mail: ckleber@unb.br;
Further Information

Publication History

Received 3 March 2002
Publication Date:
14 May 2002 (online)

Abstract

Allylation reactions promoted by niobium pentachloride are described. Allylstannanes were added to aromatic and aliphatic aldehydes and aromatic imines in good yields. Excellent syn dia­stereoselectivities were obtained in the addition of (E)-cinnamylstannane to benzaldehyde (49:1) and in the addition of crotylstannane to N-benzylideneaniline (46:1).

    References

  • Recent reviews on allylation reactions of aldehydes and imines:
  • 1a Yamamoto Y. Asao N. Chem. Rev.  1993,  93:  2207 
  • 1b Nishigaichi Y. Takuwa A. Naruta Y. Maruyama K. Tetrahedron  1993,  49:  7395 
  • 1c Marshall JA. Chem. Rev.  1996,  96:  31 
  • 1d Bloch R. Chem. Rev.  1998,  98:  1407 
  • 2a Suzuki K. Hashimoto T. Maeta H. Matsumoto T. Synlett  1992,  125 
  • 2b Maeta H. Nagasawa T. Handa Y. Takei T. Osamura Y. Suzuki K. Tetrahedron Lett.  1995,  36:  899 
  • 2c Howarth J. Gillespie K. Tetrahedron Lett.  1996,  37:  6011 
  • 2d Yamamoto M. Nakazawa M. Kishikawa K. Kohmoto S. Chem. Commun.  1996,  20:  2353 
  • 2e Chandrasekhar S. Takhi M. Reddy YR. Mohapatra S. Rao CR. Reddy KV. Tetrahedron  1997,  53:  14997 
  • 2f Kobayashi S. Busujima T. Nagayama S. Chem.-Eur. J.  2000,  6:  3491 
  • 3 Hagen G. Mayr H. J. Am. Chem. Soc.  1991,  113:  4954 
  • 4 For a review on niobium compounds, see: Nowak I. Ziolek M. Chem. Rev.  1999,  99:  3603 
  • Preliminary communications of this work:
  • 5a Andrade CKZ. Azevedo NR. Tetrahedron Lett.  2001,  42:  6473 
  • 5b Andrade CKZ. Oliveira GR. Tetrahedron Lett.  2002,  43:  1935 
  • 6 Yamamoto Y. Yatagai H. Ishihara Y. Maeda N. Maruyama K. Tetrahedron  1984,  40:  2239 
  • 7 Heathcock CH. Kiyooka S. Blumenkopf TA. J. Org. Chem.  1984,  49:  4214 
  • 8 Keck GE. Abbott DE. Boden EP. Enholm EJ. Tetrahedron Lett.  1984,  25:  3927 
  • 9 Coxon JM. van Eyk SJ. Steel PJ. Tetrahedron  1989,  45:  1029 
  • For spectroscopic studies on the transmetallation involving Sn and B, see:
  • 10a Denmark SE. Wilson T. Willson TM. J. Am. Chem. Soc.  1988,  110:  984 
  • 10b Denmark SE. Weber EJ. Wilson TM. Willson TM. Tetrahedron  1989,  45:  1053 
  • 10c Naruta Y. Nishigaichi Y. Maruyama K. Tetrahedron  1989,  45:  1067 
  • 10d Keck GE. Andrus MB. Castellino S. J. Am. Chem. Soc.  1989,  111:  8136 
  • 11 For its synthesis, see: Carofiglio T. Marton D. Tagliavini G. Organometallics  1992,  11:  2961 
  • 12 Koreeda M. Tanaka Y. Chem. Lett.  1982,  1299 
  • 13 In CH2Cl2 the reaction is syn-selective (82:18): Yasuda M. Sugawa Y. Yamamoto A. Shibata I. Baba A. Tetrahedron Lett.  1996,  37:  5951 
  • 14 The anti isomer is also obtained exclusively in the reaction of cinnamyl chloride with aldehydes mediated by tin and aluminum. See ref. Also: Uneyama K. Nanbu H. Torii S. Tetrahedron Lett.  1986,  27:  2395 
  • 15 Reaction between cinnamyl bromide and benzaldehyde, mediated by zinc in aqueous media: Wilson RS. Guazzaroni ME. J. Org. Chem.  1989,  54:  3087 
  • 16 1H NMR (CDCl3) anti: δ = 1.54 (br, 1 H), 3.54 (t, 1 H, J = 8.3 Hz), 5.10-5.30 (m, 3 H), 6.25 (ddd, 1 H, J = 19.1, 10.2, 8.9 Hz), 7.00-7.38 (m, 10 H). See: Coxon JM. Simpson GW. Steel PJ. Trenerry VC. Aust. J. Chem.  1984,  37:  65 
  • 18 Wang D.-K. Dai L.-X. Hou X.-L. Tetrahedron Lett.  1995,  36:  8649 
  • 19a Bellucci C. Cozzi PG. Umani-Ronchi A. Tetrahedron Lett.  1995,  36:  7289 
  • 19b Kobayashi S. Iwamoto S. Nagayama S. Synlett  1997,  1099 
  • 19c Kobayashi S. Bujima T. Nagayama S. Chem. Commun.  1998,  19 
  • 19d Kobayashi S. Ishitani H. J. Syn. Org. Chem. Jpn.  1998,  56:  357 
  • 20a Nakamura H. Iwama H. Yamamoto Y. Chem. Commun.  1996,  1459 
  • 20b Nakamura H. Iwama H. Yamamoto Y. J. Am. Chem. Soc.  1996,  118:  6641 
  • 20c Nakamura H. Nakamura K. Yamamoto Y. J. Am. Chem. Soc.  1998,  120:  4242 
  • 20d Bao M. Nakamura H. Yamamoto Y. Tetrahedron Lett.  2000,  41:  131 
  • 20e Bao M. Nakamura H. Yamamoto Y. Angew. Chem. Int. Ed.  2001,  40:  3208 
  • 22 An example of palladium-catalyzed double-allylation reaction has recently been reported: Nakamura H. Aoyagi K. Shim J.-G. Yamamoto Y. J. Am. Chem. Soc.  2001,  123:  372 
  • 23 Wang D.-K. Dai L.-X. Hou X.-L. Tetrahedron Lett.  1995,  36:  8649 
  • 24 Yamamoto Y. Komatsu T. Maruyama K. J. Org. Chem.  1985,  50:  3115 
  • 25 Keck GE. Enholm EJ. J. Org. Chem.  1984,  50:  146 
  • 27a Keck GE. Savin KA. Cressman ENK. Abbott DE. J. Org. Chem.  1994,  59:  7889 
  • 27b Keck GE. Dougherty SM. Savin KA. J. Am. Chem. Soc.  1995,  117:  6210 
  • 28 An eight-membered cyclic transition state with synclinal arrangement of the reacting C=C and C=O double bonds has been suggested for the reaction between aldehydes and allylsilane promoted by BF3·Et, based on computational evidence Bottoni A. Costa AL. Tommaso DD. Rossi I. Tagliavini E. J. Am. Chem. Soc.  1997,  119:  12131 
17

1H NMR (CDCl3) syn: δ = 1.94 (br, 1 H), 3.63 (t, 1 H, J = 8.0 Hz), 4.78-5.04 (m, 3 H), 5.89 (ddd, 1 H, J = 7.8, 10.3, 18.1 Hz), 7.01-7.38 (m, 10 H). For comparison, see ref. [27]

21

The choice for CH2Cl2 was based on the fact that the reaction in this solvent could be run at lower temperature (-78 °C) as compared to CH3CN.

26

For a complete discussion of the possible transition states geometries, see ref. [24]