Synlett 2002(5): 0739-0742
DOI: 10.1055/s-2002-25366
LETTER
© Georg Thieme Verlag Stuttgart · New York

Polymer-Assisted Parallel Solution Phase Synthesis of Substituted Benzimidazoles

Young K. Yun*a, John A. Porco Jr.b, Jeff Labadiea
a Argonaut Technologies, 1101 Chess Drive, Foster City, CA 94404, USA
b Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, MA 02215, USA
Fax: +1(650)6554300; e-Mail: yyun@argotech.com;
Further Information

Publication History

Received 26 February 2002
Publication Date:
07 February 2007 (online)

Abstract

A small library of benzimidazoles was prepared using polymer-bound reagents and scavengers. Polymer-assisted reaction of diphenyl diamines with carboxylic acids yielded o-amido-diphenylamines in the presence of Polystyrene-Carbodiimide (PS-Carbodiimide) using 1-hydroxy-7-azabenzotriazole (HOAt) as additive. Excess HOAt was scavenged post-reaction using Polystyrene-Trisamine (PS-Trisamine) resin. Treatment of o-amido-diphenyl­amines with AcOH facilitated acid-catalyzed cyclodehydration to afford benzimidazoles in good yields and excellent purities.

    References

  • For recent reviews on parallel solution-phase synthesis using polymer reagents and scavengers, see:
  • 1a Thomson MA. Ellman JA. Chem. Rev.  1996,  96:  555 
  • 1b Kaldor SW. Siegel MW. Curr. Opin. Chem. Biol.  1997,  1:  101 
  • 1c Coffen DL. Tetrahedron  1998,  54:  4085 
  • 1d Booth RJ. Hodges JC. J. Am. Chem. Soc.  1997,  119:  4882 
  • 1e Flynn DL. Crich JZ. Devraj RV. Hockerman SL. Parlow JJ. South MS. Woodard SS. J. Am. Chem. Soc.  1997,  119:  4874 
  • 1f Parlow JJ. Mischke DA. Woodard SS. J. Org. Chem.  1997,  62:  5908 
  • 1g Shuker AJ. Siegel MG. Matthews DP. Wiegel LO. Tetrahedron Lett.  1997,  38:  6149 
  • 1h Parlow JJ. Devraj RV. South MS. Curr. Opin. Chem. Biol.  1999,  3:  320 
  • 1i Flynn DL. Med. Res. Rev.  1999,  19:  408 
  • 1j Brummer O. Clapham B. Janda KD. Curr. Opion. Drug Discovery Dev.  2000,  3:  462 
  • 1k Shuttleworth SJ. Allin SM. Wilson RD. Nasturica D. Synthesis  2000,  1035 
  • 1l Bhalay G. Dunstan A. Glen A. Synlett  2000,  1846 
  • 1m de Miguel YR. J. Chem. Soc., Perkin Trans 1  2000,  4213 
  • 1n Bhattacharyya S. Comb. Chem. High Throughput Screening  2000,  3:  65 
  • 1o Ley SV. Baxendale IR. Bream RN. Jackson PS. Leach AG. Longbottom DA. Nesi M. Scott JS. Storer RI. Taylor SJ. J. Chem. Soc., Perkin Trans 1  2000,  3815 
  • 1p Kirschning A. Monenschein H. Wittenberg R. Angew. Chem. Int. Ed.  2001,  40:  650 
  • For recent publications on the solid-phase synthesis of benzimidazoles, see:
  • 3a Scarborough RM. Huang W. Tetrahedron Lett.  1999,  40:  2665 
  • 3b Pan P. Sun C. Bioorg. Med. Chem. Lett.  1999,  9:  1537 
  • 3c Tumelty D. Schearz M. Needels MC. Tetrahedron Lett.  1998,  39:  7467 
  • 3d Mayer JP. Lewis GS. McGee C. Bankaitis-Davis D. Tetrahedron Lett.  1998,  39:  6655 
  • 3e Wei GP. Phillips GB. Tetrahedron Lett.  1998,  39:  179 
  • 3f Lee J. Gauthier D. Rivero RA. Tetrahedron Lett.  1998,  39:  201 
  • 3g Phillips GB. Wei GP. Tetrahedron Lett.  1996,  37:  4887 
  • 4a White AW. Almassy R. Calvert AH. Curtin NJ. Griffin RJ. Hostomsky Z. Maegley K. Newell DR. Srinivasan S. Golding BT. J. Med. Chem.  2000,  43:  4084 
  • 4b Chua M. Shi D. Wrigley S. Bradshaw TD. Hutchinson I. Shaw PN. Barrett D. Stanley LA. Stevens MFG. J. Med. Chem.  1999,  42:  381 
  • 4c Palmer B. Smaill J. Boyd M. Boschelli D. J. Med. Chem.  1998,  41:  5457 
  • 4d Orjales A. Mosquera R. Labeaga L. Rodes R. J. Med. Chem.  1997,  40:  586 
  • 4e Terauchi H. Tanitame A. Nakamura K. Seto Y. Nishikawa Y. J. Med. Chem.  1997,  40:  313 
  • 4f Zarrinmayeh H. Zimmerman DM. Cantrell BE. Schober DA. Bruns RF. Gackenheimer SL. Ornstein PL. Hipskind PA. Britton TC. Gehlert DR. Bioorg. Med. Chem. Lett.  1999,  9:  647 
  • 5a Zhang L. Wats WM. Costello TD. Ma P. Ensinger CL. Rodgers JM. Jacobson IC. Rajagopalan P. Tetrahedron Lett.  1995,  36:  8387 
  • 5b Lee J. Murray WV. Rivero RA. J. Org. Chem.  1997,  62:  3874 
  • 5c Mazurov A. Tetrahedron Lett.  2000,  41:  7 
  • 5d Arumugam V. Routledge A. Abell C. Balasubramanian S. Tetrahedron Lett.  1997,  38:  6473 
  • 5e Kiselyov A. Armstrong RW. Tetrahedron Lett.  1997,  38:  6163 
  • 5f Rylander P. Hydrogenation Methods   Academic Press; San Diego CA: 1985.  p.104-116  
  • 6a Veale CA. Steelman GB. Chow MM. J. Org. Chem.  1993,  58:  4490 
  • 6b Batti R. Gouverneur V. Mioskowski C. Synthesis  1999,  927 
  • 7a Eynde JJV. Delfosse F. Lor P. Haverbeke YV. Tetrahedron  1995,  51:  5813 
  • 7b Thomas JB. Fall MJ. Cooper JB. Burgess JP. Carroll FI. Tetrahedron Lett.  1997,  38:  5099 
  • 7c Moore AG. Schow SR. Lum RT. Nelson MG. Melville CR. Synthesis  1999,  1123 
  • Representative procedure for amide coupling using PS-carbodiimide and PS-Trisamine:
  • 8a

    Method A: PS-Carbodiimide resin (2.0 equiv) was added to a dry reaction vessel. The acid (1.5 equiv) in CH2Cl2 (with 10% DMF added if required) was added to the dry resin and the mixture stirred at room temperature. After 5 min., amine (1.0 equiv) in CH2Cl2 was added and the reaction stirred at room temperature for 12 h to afford the amide product. Typical reaction solvent volumes are 10 mL/g resin.

  • 8b

    Method B: Amine (1.0 equiv) and acid (1.5 equiv) in CH2Cl2 (with 10% DMF added if necessary) were added to a dry reaction vessel and the mixture stirred for 10 min prior to addition of PS-Carbodiimide resin (2 equiv) with a reaction solvent volume of 10 mL/g resin. The reaction was then stirred overnight.

  • 8c

    Method C: PS-Carbodiimide (2.0 equiv), acid (1.5 equiv) and HOAt (1.7 equiv) were dissolved in CH2Cl2 and added to a dry reaction vessel and stirred for 5-10 min prior to addition of amine (1.0 equiv). The reaction was stirred at room temperature overnight. After the reaction, the HOAt was scavenged using PS-Trisamine resin (5 equiv) for 2 hours at room temperature prior to filtration.

  • 8d

    General Procedure for Reaction Work-up: The reaction mixture was filtered and the amide product was collected in the filtrate. The resin was further washed an additional two times with the reaction solvent (CH2Cl2 or CH2Cl2-DMF as needed for solubility). A sample from the combined fractions was generally analyzed by GC before concentration to evaluate product purity and presence (if any) of unreacted amine. Concentration afforded the amide product.

  • 9a Weidner JJ. Parlow JJ. Flynn DL. Tetrahedron Lett.  1999,  40:  239 
  • 9b Nicewonger RB. Ditto L. Varady L. Tetrahedron Lett.  2000,  41:  2323 
  • 10a Nestor JJ. Horner BL. Ho TL. Jones GH. McRae GI. Vickery BH. J. Med. Chem.  1984,  27:  320 
  • 10b Ogatta M. Yoshimura T. Fijji H. Ito Y. Katsuki T. Synlett  1993,  728 
  • 10c Clarborne CF. Liverton NJ. Tetrahedron Lett.  1998,  39:  8939 
2

Yun, Y. K.; Porco, Jr., J. A. Synthesis of Substituted Benzimidazoles using Parallel Hydrogenation, Argonaut Technologies, Application Note APN 025.

11

Representative spectroscopic data for compounds 2-4, 6, and 7.2d: 1H NMR (CDCl3, 300 MHz): δ 9.96 (bs, 1 H, NH), 8.50 (dd, J = 8.1 Hz, 1.5 Hz, 1 H, CH), 8.43 (dd, J = 4.8 Hz, 1.8 Hz, 1 H, CH), 7.48 (d, J = 9.3 Hz, 2 H, CH), 6.93 (d, J = 9.0 Hz, 2 H, CH), 6.77 (dd, J = 8.7 Hz, 4.8 Hz, 1 H, CH), 3.82 (s, 3 H, CH3); 13C NMR (CDCl3, 75 MHz): δ 157.12, 155.45, 150.81, 135.46, 130.61, 128.30, 124.78, 114.26, 113.34, 55.48 ppm.
3d: 1H NMR (d6-DMSO, 300 MHz): δ 7.95 (bs, 1 H, NH), 7.49 (d, J = 9.0 Hz, 2 H, CH), 7.36 (dd, J = 4.8 Hz, 1.2 Hz, 1 H, CH), 6.90 (dd, J = 7.5 Hz, 1.2 Hz, 1 H, CH), 6.86 (d, J = 9.0 Hz, 1 H, CH), 6.58 (dd, J = 7.8 Hz, 5.4 Hz, 1 H, CH), 5.60 (bs, 2 H, NH2), 3.71 (s, 3 H, CH3); 13C NMR (d6-DMSO, 75 MHz): δ 154.46, 144.13, 134.11, 132.20, 131.94, 121.61, 119.56, 114.89, 114.11, 55.34 ppm.
4d: 1H NMR (CDCl3, 300 MHz): δ 8.44 (d, J = 4.8 Hz, 1 H, CH), 8.25 (s, 1 H, CH), 8.13 (d, J = 7.8 Hz, 1 H, CH), 7.60 (d, J = 8.7 Hz, 2 H, CH), 7.30 (dd, J = 8.1 Hz, 4.8 Hz, 1 H, CH), 7.08 (d, 2 H, CH), 3.85 (s, 3 H, CH3); 13C NMR (CDCl3, 75 MHz): δ 159.30, 147.12, 144.90, 143.29, 135.71, 128.23, 128.01, 125.37, 118.71, 115.01, 55.61 ppm.
6i: 1H NMR (CDCl3, 300 MHz): δ 9.17 (s, 1 H, CH), 7.98 (d, J = 8.4 Hz, 2H, CH), 7.71 (dd, J = 8.7, 2.1 Hz, 2 H, CH), 7.55 (s, 1 H, CH), 7.43 (d, J = 8.7 Hz, 1 H, CH), 6.86 (d, J = 8.7 Hz, 1 H, CH), 5.41 (s, 1 H, CH), 3.23 (t, J = 6.9 Hz, 2 H, CH2), 1.61 (tt, J = 7.5, 7.5 Hz, 2 H, CH2), 1.43 (tq, J = 8.1, 7.2 Hz, 2 H, CH2), 0.91 (t, J = 7.5 Hz, 3 H, CH3) ppm.
7i: 1H NMR (CDCl3, 300 MHz): δ 7.97 (s, 1 H, CH), 7.82 (d, J = 8.4 Hz, 1 H, CH), 7.72 (d, J = 8.4 Hz, 2 H, CH), 7.67 (d, J = 8.7 Hz, 2 H, CH), 7.54 (d, J = 8.1 Hz, 1 H, CH), 4.27 (t, J = 7.2 Hz, 2 H, CH2), 1.55 (tt, J = 7.5, 7.5 Hz, 2 H, CH2), 1.05 (tq, J = 7.8, 7.2 Hz, 2 H, CH2), 0.66 (t, J = 7.5 Hz, 3 H, CH3); 13C NMR (CDCl3, 75 MHz): δ 154.27, 141.92, 137.99, 131.89, 131.22, 129.13, 123.83, 119.17, 116.62, 44.18, 31.14, 19.14, 13.23 ppm.

12

Yun, Y. K.; Vo, L.; Porco, Jr., J. A.; Labadie, J. 219th ACS National Meeting, 2000, ORGN 1.