Laryngorhinootologie 2002; 81(3): 189-195
DOI: 10.1055/s-2002-25039
Otologie
© Georg Thieme Verlag Stuttgart · New York

Wortmannin, ein spezifischer Inhibitor der Phosphatidylinositol-3-Kinase, beeinflusst das neurotrophin-induzierte Wachstum von Spiralganglienneuriten

Wortmannin, a Specific Inhibitor of Phosphatidylinositol-3-Kinase Influences Neurotrophin-induced Spiral Ganglion Neurite GrowthC.  Aletsee 1, 2 , D.  Brors 1, 2 , R.  Mlynski 1 , A.  F.  Ryan 2 , S.  Dazert 1
  • 1 Klinik und Poliklinik für Hals-, Nasen- und Ohrenkranke, Bayerische Julius-Maximilians-Universität Würzburg, Deutschland (Direktor: Prof. Dr. J. Helms)
  • 2 Department of Surgery/Otolaryngology and Neurosciences, UCSD School of Medicine and Veterans Administration Medical Center, La Jolla, California, USA
Herrn Professor Dr. Jan Helms zum 65. Geburtstag gewidmet.
Further Information

Publication History

10. Oktober 2001

17. Januar 2002

Publication Date:
12 April 2002 (online)

Zusammenfassung

Hintergrund: Der Phosphatidylinositol-3-Kinase (PI3K) wird eine wesentliche Rolle bei der intrazellulären Übertragung von Neurotrophin-Signalen vom Rezeptor an der Zellmembran zum Zellkern zugesprochen.

Methode: In dieser Studie wurde die Beteiligung der PI3K bei der Vermittlung von Neurotrophin-Effekten im Spiralganglion (SG) neugeborener Ratten untersucht. Die SG-Explantate wurden in vitro mit Neurotrophin-3 (NT-3) stimuliert und zusätzlich mit Wortmannin, einem spezifischen Inhibitor der PI3K behandelt. Nach Fixierung und immunhistochemischer Färbung der Explantate erfolgte die Auswertung des Neuritenwachstums.

Ergebnisse: Die Stimulation mit NT-3 führte zu dem bereits bekannten Effekt einer Zunahme sowohl der Anzahl, als auch der Länge der auswachsenden SG-Neuriten im Vergleich zu Kontrollexplantaten. Die Behandlung NT-3-stimulierter SG-Explantate mit Wortmannin resultierte in einer konzentrationsabhängigen Reduktion beider Parameter, während nach der Inkubation von Kontrollexplantaten mit Wortmannin keine Änderung des Neuritenwachstums beobachtet wurde.

Schlussfolgerung: Die Ergebnisse der Untersuchung zeigen, dass neurotrophin-induziertes Neuritenwachstum von SG-Explantaten durch den PI3K-Inhibitor Wortmannin moduliert werden kann und deuten darauf hin, dass die PI3K ein wichtiges Schlüsselenzym bei der Vermittlung von Effekten des Wachstumfaktors NT-3 in cochleären Neuronen darstellt. Zusammen mit den Ergebnissen früherer Untersuchungen deuten die aktuellen Resultate darauf hin, dass sowohl die Aktivierung der PI3K, als auch des G-Proteins Ras und der mitogen-aktivierten Proteinkinase Kinase (MEK) für das Neuritenwachstum von SG-Neuronen notwendig sind. Die weitere Aufklärung dieser, das Wachstum der SG-Neuriten beeinflussenden molekulären Mechanismen lässt für die Zukunft neue therapeutische Ansätze für Innenohrerkrankungen erwarten.

Abstract

Background: Phosphatidylinositol 3-kinase (PI3K) is considered to be an important enzyme in cell signaling, mediating certain aspects of neurotrophin signals from the cell surface receptor to the nucleus.

Methods: The participation of PI3K in the mediation of neurotrophin-induced effects in the spiralganglion (SG) of neonatal rats was investigated in vitro. SG explants were stimulated with neurotrophin (NT)-3 and treated with Wortmannin, a specific inhibitor of PI3K. After fixation and immunhistochemical staining, the growth of the SG neurites was evaluated.

Results: Stimulation with NT-3 lead to significant increases in number and length of neurites, when compared to non-stimulated controls. Treatment of NT-3 stimulated SG explants resulted in a dose-dependent reduction of both parameters, whereas the neurite growth of non-stimulated control explants was not significantly influenced by the incubation with Wortmannin.

Conclusions: The results demonstrate that neurotrophin-induced neurite growth from SG explants can be modulated with the PI3K inhibitor Wortmannin and indicate that PI3K is a key enzyme in the mediation of NT-3 effects in cochlear neurons. These observations together with results of previous studies suggest that the activation of PI3K as well as Ras and MEK are essential for neurite growth in cochlear neurons. Further knowledge of cell signaling mechanisms influencing SG neurite growth could lead to new therapeutical strategies for the treatment of inner ear diseases.

Literatur

  • 1 Levi J A, Thomson D, Sandeman T, Tattersall M, Raghavan D, Byrne M, Gill G, Harvey V, Burns I, Snyder R. A prospective study of cisplatin-based combination chemotherapy in advanced germ cell malignancy: role of maintenance and long-term follow-up.  J Clin Oncol. 1988;  6 (7) 1154-1160
  • 2 Kaplan D R, Stephens R M. Neurotrophin signal transduction by the Trk receptor.  J Neurobiol. 1994;  25 (11) 1404-1417
  • 3 Dazert S, Kim D, Luo L, Aletsee C, Garfunkel S, Maciag T, Baird A, Ryan A F. Focal delivery of fibroblast growth factor-1 by transfected cells induces spiral ganglion neurite targeting in vitro.  J Cell Physiol. 1998;  177 (1) 123-129
  • 4 Aletsee C, Mullen L, Kim D, Pak K, Brors D, Dazert S, Ryan A F. The disintegrin kistrin inhibits neurite extension from spiral ganglion explants cultured on laminin.  Audiol Neurootol. 2001;  6 (2) 57-65
  • 5 Ylikoski J, Pirvola U, Moshnyakov M, Palgi J, Arumae U, Saarma M. Expression patterns of neurotrophin and their receptor mRNAs in the rat inner ear.  Hear Res. 1993;  65 (1-2) 69-78
  • 6 Ernfors P, Rosario C M, Merlio J P, Grant G, Aldskogius H, Persson H. Expression of mRNAs for neurotrophin receptors in the dorsal root ganglion and spinal cord during development and following peripheral or central axotomy.  Brain Res Mol Brain Res. 1993;  17 (3-4) 217-226
  • 7 Pirvola U, Arumae U, Moshnyakov M, Palgi J, Saarma M, Ylikoski J. Coordinated expression and function of neurotrophins and their receptors in the rat inner ear during target innervation.  Hear Res. 1994;  75 (1-2) 131-144
  • 8 Pirvola U, Ylikoski J, Palgi J, Lehtonen E, Arumae U, Saarma M. Brain-derived neurotrophic factor and neurotrophin 3 mRNAs in the peripheral target fields of developing inner ear ganglia.  Proc Natl Acad Sci USA. 1992;  89 (20) 9915-9919
  • 9 Ernfors P, Duan M L, ElShamy W M, Canlon B. Protection of auditory neurons from aminoglycoside toxicity by neurotrophin-3.  Nat Med. 1996;  2 (4) 463-467
  • 10 Malgrange B, Lefebvre P P, Martin D, Staecker H, van de Water T R, Moonen G. NT-3 has a tropic effect on process outgrowth by postnatal auditory neurones in vitro.  Neuroreport. 1996;  7 (15-17) 2495-2499
  • 11 Farinas I, Jones K R, Backus C, Wang X Y, Reichardt L F. Severe sensory and sympathetic deficits in mice lacking neurotrophin-3.  Nature. 1994;  369 (6482) 658-661
  • 12 Staecker H, Kopke R, Malgrange B, Lefebvre P, van de Water T R. NT-3 and/or BDNF therapy prevents loss of auditory neurons following loss of hair cells.  Neuroreport. 1996;  7 (4) 889-894
  • 13 Kopke R, Staecker H, Lefebvre P, Malgrange B, Moonen G, Ruben R J, van de Water T R. Effect of neurotrophic factors on the inner ear: clinical implications.  Acta Otolaryngol. 1996;  116 (2) 248-252
  • 14 Knipper M. NT-3 and BDNF for potential inner ear therapy.  HNO. 1997;  45 (4) 181-183
  • 15 Fritzsch B, Pirvola U, Ylikoski J. Making and breaking the innervation of the ear: neurotrophic support during ear development and its clinical implications.  Cell Tissue Res. 1999;  295 (3) 369-382
  • 16 Chao M V. Neurotrophin receptors: a window into neuronal differentiation.  Neuron. 1992;  9 (4) 583-593
  • 17 Lamballe F, Klein R, Barbacid M. trkC, a new member of the trk family of tyrosine protein kinases, is a receptor for neurotrophin-3.  Cell. 1991;  66 (5) 967-979
  • 18 Merlio J P, Ernfors P, Jaber M, Persson H. Molecular cloning of rat trkC and distribution of cells expressing messenger RNAs for members of the trk family in the rat central nervous system.  Neuroscience. 1992;  51 (3) 513-532
  • 19 Carter B D, Dechant G, Frade J M, Kaltschmidt C, Barde Y A. Neurotrophins and their p75 receptor.  Cold Spring Harb Symp Quant Biol. 1996;  61 407-415
  • 20 Greene L A, Kaplan D R. Early events in neurotrophin signaling via Trk and p75 receptors.  Curr Opin Neurobiol. 1995;  5 (5) 579-587
  • 21 Rodriguez-Viciana P, Warne P H, Khwaja A, Marte B M, Pappin D, Das P, Waterfield M D, Ridley A, Downward J. Role of phosphoinositide 3-OH kinase in cell transformation and control of the actin cytoskeleton by Ras.  Cell. 1997;  89 (3) 457-467
  • 22 Aletsee C, Beros A, Mullen L M, Palacios S, Kwang Pak K, Dazert S, Ryan A F. Ras/MEK but not p38 signaling mediates NT-3 induced neurite extension from spiral ganglion neurons.  Journal of the ARO. im Druck 2001; 
  • 23 Yao R, Cooper G M. Requirement for phosphatidylinositol-3 kinase in the prevention of apoptosis by nerve growth factor.  Science. 1995;  267 (5206) 2003-2006
  • 24 Franke T F, Kaplan D R, Cantley L C. PI3K: downstream AKTion blocks apoptosis.  Cell. 1997;  88 (4) 435-437
  • 25 Kimura K, Hattori S, Kabuyama Y, Shizawa Y, Takayanagi J, Nakamura S, Toki S, Matsuda Y, Onodera K, Fukui Y. Neurite outgrowth of PC12 cells is suppressed by wortmannin, a specific inhibitor of phosphatidylinositol 3-kinase.  J Biol Chem. 1994;  269 (29) 18 961-18 967
  • 26 Jackson T R, Blader I J, Hammonds-Odie L P, Burga C R, Cooke F, Hawkins P T, Wolf A G, Heldman K A, Theibert A B. Initiation and maintenance of NGF-stimulated neurite outgrowth requires activation of a phosphoinositide 3-kinase.  J Cell Sci. 1996;  109 (Pt 2) 289-300
  • 27 Crowder R J, Freeman R S. Phosphatidylinositol 3-kinase and Akt protein kinase are necessary and sufficient for the survival of nerve growth factor-dependent sympathetic neurons.  J Neurosci. 1998;  18 (8) 2933-2943
  • 28 Dolcet X, Egea J, Soler R M, Martin-Zanca D, Comella J X. Activation of phosphatidylinositol 3-kinase, but not extracellular-regulated kinases, is necessary to mediate brain-derived neurotrophic factor-induced motoneuron survival.  J Neurochem. 1999;  73 (2) 521-531
  • 29 Hetman M, Kanning K, Cavanaugh J E, Xia Z. Neuroprotection by brain-derived neurotrophic factor is mediated by extracellular signal-regulated kinase and phosphatidylinositol 3-kinase.  J Biol Chem. 1999;  274 (32) 22 569-22 580
  • 30 Brain P W, Curtis P J, Hemming H G, Noris G LF. Wortmannin an antibiotic produced by Penicillum wortmannii. .  Trans Br Mycol Soc. 1957;  40 365-368
  • 31 Nakanishi S, Kakita S, Takahashi I, Kawahara K, Tsukuda E, Sano T, Yamada K, Yoshida M, Kase H, Matsuda Y et al. Wortmannin, a microbial product inhibitor of myosin light chain kinase.  J Biol Chem. 1992;  267 (4) 2157-2163
  • 32 Yano H, Nakanishi S, Kimura K, Hanai N, Saitoh Y, Fukui Y, Nonomura Y, Matsuda Y. Inhibition of histamine secretion by wortmannin through the blockade of phosphatidylinositol 3-kinase in RBL-2H3 cells.  J Biol Chem. 1993;  268 (34) 25 846-25 856
  • 33 Okada T, Sakuma L, Fukui Y, Hazeki O, Ui M. Blockage of chemotactic peptide-induced stimulation of neutrophils by wortmannin as a result of selective inhibition of phosphatidylinositol 3-kinase.  J Biol Chem. 1994;  269 (5) 3563-3567
  • 34 Okada T, Kawano Y, Sakakibara T, Hazeki O, Ui M. Essential role of phosphatidylinositol 3-kinase in insulin-induced glucose transport and antilipolysis in rat adipocytes. Studies with a selective inhibitor wortmannin.  J Biol Chem. 1994;  269 (5) 3568-3573
  • 35 Nonomura T, Kubo T, Oka T, Shimoke K, Yamada M, Enokido Y, Hatanaka H. Signaling pathways and survival effects of BDNF and NT-3 on cultured cerebellar granule cells.  Brain Res Dev Brain Res. 1996;  97 (1) 42-50
  • 36 Kotani K, Yonezawa K, Hara K, Ueda H, Kitamura Y, Sakaue H, Ando A, Chavanieu A, Calas B, Grigorescu F et al. Involvement of phosphoinositide 3-kinase in insulin- or IGF-1-induced membrane ruffling.  Embo J. 1994;  13 (10) 2313-2321
  • 37 Wymann M, Arcaro A. Platelet-derived growth factor-induced phosphatidylinositol 3-kinase activation mediates actin rearrangements in fibroblasts.  Biochem J. 1994;  298 Pt 3 517-520
  • 38 Lavie Y, Dybowski J, Agranoff B W. Wortmannin blocks goldfish retinal phosphatidylinositol 3-kinase and neurite outgrowth.  Neurochem Res. 1997;  22 (4) 373-378
  • 39 Hetman M, Xia Z. Signaling pathways mediating anti-apoptotic action of neurotrophins.  Acta Neurobiol Exp. 2000;  60 (4) 531-545

PD Dr. Stefan Dazert

Klinik und Poliklinik für Hals-, Nasen- und Ohrenkranke · Bayerische Julius-Maximilians-Universität Würzburg

Josef-Schneider-Straße 11 · 97080 Würzburg

Email: s.dazert@mail.uni-wuerzburg.de

    >