Plant Biol (Stuttg) 2002; 4(1): 94-103
DOI: 10.1055/s-2002-20441
Original Paper
Georg Thieme Verlag Stuttgart ·New York

Distribution of Adult Male and Female Baccharis concinna (Asteraceae) in the Rupestrian Fields of Serra Do Cipó, Brazil

A. R. Marques 1 , G. W. Fernandes 2 , I. A. Reis 3 , R. M. Assunção 3
  • 1 Laboratório de Fisiologia Vegetal/DB, ICB/Universidade Federal de Minas Gerais, Belo Horizonte MG, Brazil
  • 2 Ecologia Evolutiva da Herbívoros Tropicais/DBG, ICB/Universidade Federal de Minas Gerais, CP 486, 30161-970 Belo Horizonte MG, Brazil
  • 3 Departamento de Estatística, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, CP 702, 30161-970 Belo Horizonte MG, Brazil
Further Information

Publication History

October 9, 2000

November 13, 2001

Publication Date:
28 February 2002 (online)

Abstract

This study focuses on the sex ratio and spatial distribution of males and females in three populations of the endemic and restricted tropical dioecious shrub, Baccharis concinna (Asteraceae) in the mountainous region of Serra do Cipó, southeastern Brazil. The proportion of female plants in the population at lower elevation (1000 m a.s.l.) was significantly greater than of male plants. At this elevation of P/N and Ca/Al ratios in the soil were also greater indicating better nutritional status of the soils. The concentration of aluminium increased significantly with the elevation (p < 0.001), perhaps rendering soils less conducive to female plants at higher elevations. Female plants are possibly adversely affected to a greater extent by soil quality than male plants. The spatial distribution of the populations within habitat was tested by the K(t) function, where the neighbourhood of a given individual was defined by a circle with a radius (t) up to 3 m. Despite the strong tendency for aggregation, the distribution of the sexes within habitats was random and the hypothesis was not supported. The independent distribution of the sexes within habitats may be explained by nutrient homogeneity of the soils, as well as by an absence of antagonism between the sexes. Nevertheless, we found a trend for males and females to be aggregated according to their gender.

References

  • 01 Allen,  G. A., and Antos,  A. A.. (1993);  Sex ratio variation in the dioecious shrub Oemleria cerasiformis. .  The American Naturalist. 141 537-553
  • 02 Andersen,  M.. (1992);  Spatial analysis of two-species interactions.  Oecologia. 91 134-140
  • 03 Barroso,  G. M.. (1976);  Compositae - subtribo Baccharidinae Hoffman: estudo das espécies ocorrentes no Brasil.  Rodriguesia. 40 3-273
  • 04 Bawa,  K. S.. (1980);  Evolution of dioecy in flowering plants.  Annual Review of Ecology and Systematics. 11 15-39
  • 05 Bierzychudek,  P., and Eckhart,  V.. (1988);  Spatial segregation of the sexes of dioecious plants.  The American Naturalist. 152 34-43
  • 06 Brunet,  J.. (1994);  Interacting effects of pH, aluminium and base cations on growth and mineral composition of the woodland grasses Bromus benekenii and Hordelymus europaeus. .  Plant Soil. 161 157-166
  • 07 Carrol,  S. B., and Mulcahy,  D. L.. (1991);  The relationship between pollen grain size and progeny gender in dioecious Silene latifolia (Caryophyllaceae).  Sex Plant Reproduction. 4 203-207
  • 08 Cedar,  H., and Razin,  A.. (1990);  DNA methylation and development.  Biochem. Biophys. Acta. 1049 1-8
  • 09 Cox,  P. A.. (1981);  Niche partitioning between sexes of dioecious plants.  The American Naturalist. 117 295-307
  • 10 Dale,  M. R. T., and Powell,  R. D.. (1994);  Scales of segregation and aggregation of plants of different kinds.  Canadian Journal of Botany. 72 448-453
  • 11 Diggle,  P. J.. (1983) Statistical analysis of spatial point patterns. New York; Academic Press
  • 12 Dixon,  P.. (1994);  Testing spatial segregation using a nearest-neighbor contigency table.  Ecology. 75 1940-1948
  • 13 Eiten,  G.. (1990) Vegetação do cerrado. Cerrado: caracterização, ocupação e perspectivas. Pinto, M. N., ed. Brasil; Editora Universidade de Brasília
  • 14 Fernandes,  G. W.,, Carneiro,  M. A. A.,, Lara,  A. C. F.,, Allain,  L. R.,, Andrade,  G. I.,, Julião,  G. R.,, Reis,  T. R.,, and Silva,  I. M.. (1996);  Galling insects on neotropical species of Baccharis (Asteraceae).  Tropical Zoology. 9 315-332
  • 15 Fisher,  R. A.. (1958) The genetical theory of natural selection. Dover, New York
  • 16 Freeman,  D. C.,, Klikoff,  L. G.,, and Harper,  K. T.. (1976);  Differential resource utilization by the sexes of dioecious plants.  Science. 193 597-599
  • 17 Freeman,  D. C.,, Harper,  K. T.,, and Charnov,  E. L.. (1980);  Sex change in plants: old and new observations and new hypothesis.  Oecologia. 47 222-232
  • 18 García,  M. B., and Antor,  R. J.. (1995);  Sex ratio and sexual dimorphism in the dioecious Borderia pyrenaica (Dioscoreaceae).  Oecologia. 101 59-67
  • 19 Goodland,  R.. (1971) Oligotrofismo e alumínio no cerrado. Simpósio sobre o cerrado III Editora Edgard Blucher Ltda. Ferri, M. G., ed. São Paulo
  • 20 Grant,  M. C., and Mitton,  J. B.. (1979);  Elevational gradients in adult sex ratios and sexual differentiation in vegetative growth rates of Populus tremuloides Mickx.  Evolution. 33 914-918
  • 21 Hampp,  R., and Schnabl,  H.. (1975);  Effect of aluminum ions on 14CO2-fixation and membrane system of isolated spinach chloroplasts.  Zeitschrift für Pflanzenphysiology und Bodenkunde. 76 300-306
  • 22 Harrison,  A. F.,, Taylor,  K.,, Hatton,  J. C.,, Dighton,  J.,, and Howard,  D. M.. (1991);  Potencial of root bioassay for determining P-deficiency in high altitude grassland.  Journal of Applied Ecology. 28 277-289
  • 23 Houssand,  C.,, Thompson,  J. D.,, and Josep,  E.. (1994);  Do sex-related differences in response to environmental variation influence the sex-ratio in the dioecious Rumex acetosella? .  Oikos. 70 80-90
  • 24 Jordan,  B. R.,, James,  P. E.,, Strid,  A.,, and Anthony,  R. G.. (1994);  The effect ultraviolet B radiation on gene expression and pigment composition in etiolated and green pea leaf tissue-UV-B induced changes are gene specific and dependent upon the developmental stage.  Plant Cell Environ.. 17 45
  • 25 Korpelainen,  H.. (1994);  Sex ratios and resource allocation among sexually reproducing plants of Rubus chamaemorus. .  Annals of Botany. 74 627-632
  • 26 Krischik,  V. A., and Denno,  R. F.. (1990);  Differences in environmental response between the sexes of the dioecious shrub, Baccharis halimifolia (Compositae).  Oecologia. 6 176-181
  • 27 Lal,  R.. (1994) Soil erosion research methods, 2nd edition. Florida, USA; Inst. Lucie Press
  • 28 Levin,  D. A.. (1974);  Spatial segregation of pins and thrums in populations of Hedyotis nigricans. .  Evolution. 28 648-655
  • 29 Lloyd,  D. G.. (1973);  Sex ratios in sexually dimorphic Umbelliferae.  Heredity. 31 239-249
  • 30 Lloyd,  D. G.. (1974);  Female-predominant sex ratios in angiosperms.  Heredity. 32 35-44
  • 31 Lloyd,  D. G., and Webb,  C. J.. (1977);  Secondary sex characters in plants.  The Botanical Review. 43 177-216
  • 32 Lópes,  A. S., and Cox,  F. R.. (1977);  Cerrado vegetation in Brazil: an edaphic gradient.  Agronomy Journal. 69 828-831
  • 33 Lotwick,  H. W., and Silverman,  B. W.. (1983);  Methods for analysing spatial processes of several types of points.  Journal of the Royal Statistical Society B. 44 406-413
  • 34 Lovett Doust,  J.,, O'Brien,  G.,, and Lovett Doust,  L.. (1987);  Effect of density on secondary sex characteristics and sex ratio in Silene alba (Caryophyllaceae).  American Journal of Botany. 74 40-46
  • 35 Malavolta,  E.. (1981) Manual de química agrícola, adubos e adubação. São Paulo; Editora Agronômica Ceres
  • 36 Marschner,  H.. (1991);  Mechanisms of adaptation of plant to acid soils.  Plant Soil. 134 1-20
  • 37 Meagher,  T. R.. (1980);  Population biology of Chamaelirium luteum a dioecious lily. I. Sapatial distribution of males and females.  Evolution. 34 1127-1137
  • 38 Meagher,  T. R.. (1984);  Sexual dimorphism and ecological differentiation of male and female plants.  Annals of the Missouri Botanical Garden. 71 254-269
  • 39 Melampy,  M. N., and Howe,  H. F.. (1977);  Sex ratio in tropical tree Triplaris americana (Polygonaceae).  Evolution. 31 867-872
  • 40 Morecroft,  M. D.,, Woodward,  F. I.,, and Marrs,  R. H.. (1992);  Altitudinal trends in leaf nutrient contents, leaf size and δ13C of Alchemilla alpina. .  Functional Ecology. 6 730-740
  • 41 Opler,  P. A., and Bawa,  K. S.. (1978);  Sex ratios in tropical forest trees.  Evolution. 32 812-821
  • 42 Pielou,  E. C.. (1961);  Segregation and symmetry in two-species populations as studied by nearest-neighbour relationships.  The Journal of Botany. 39 255-269
  • 43 Purrington,  C. B.. (1993);  Parental effects on progeny sex ratio, germination, and flowering in Silene latifolia (Caryophyllaceae).  Journal of Ecology. 81 807-811
  • 44 Putwain,  P., and Harper,  J.. (1972);  Studies in the dynamics of plant populations. V. Mechanisms governing the sex ratio in Rumex acetosa e Rumex acetosella. .  Journal of Ecology. 60 113-129
  • 45 Renner,  S. S., and Ricklefs,  R. E.. (1995);  Dioecy and its correlates in the flowering plants.  Am. J. Bot.. 82 596-606
  • 46 Ripley,  B. D.. (1976);  The second-orders analysis of stationary point process.  Journal of Applied Probability. 13 225-266
  • 47 Salas,  C. E.,, Pfohl-Leskowicz,  A.,, Lang,  M. C.,, and Dirheimer,  G.. (1979);  Effect of modification by N-acetoxy-N-2-acetylaminofluorene on the level of DNA methylation.  Nature. 278 71-72
  • 48 Schnabl,  H., and Ziegler,  H.. (1974);  Der Einfluss des Aluminiums, den Gasaustausch und das Welken von Schnittpflanzen.  Berichte der Deutschen Botanischen Gesellschaft. 87 13-19
  • 49 Solbrig,  O. T.,, Medina,  E.,, and Silva,  J. F.. (1996) Biodiversity and savanna ecosystem processes. New York; Springer-Verlag
  • 50 Taylor,  D. R.. (1994);  The genetic basis of sex ratio in Silene alba (= S. latifolia). .  Genetics. 136 641-651
  • 51 Vasiliauskas,  S. A., and Aarssen,  L. W.. (1992);  Sex ratio and neighbor effects in monospecific stands of Juniperus virginiana. .  Ecology. 73 622-632
  • 52 Vierstra,  R., and Haug,  A.. (1978);  The effect of Al3+ on the physical properties of membrane lipids in Thermoplasma acidoplilum. .  Biochem. Biosphys. Res. Commun.. 84 138-143
  • 53 Wright,  R. L.. (1989);  Soil aluminium toxicity and plant growth.  Commun. Soil Sci. Plant Anal.. 20 1479-1497
  • 54 Zar,  J. H.. (1996) Biostatistical analysis, Third Edition. New Jersey; Prentice Hall

A. R. Marques

Laboratório de Fisiologia Vegetal/DB
ICB/Universidade Federal de Minas Gerais

Caixa Postal 486
30161-970 Belo Horizonte MG
Brazil

Email: marques@dedalus.lcc.ufmg.br

Section Editor: R. Aerts

    >