Synlett 2002(2): 0275-0279
DOI: 10.1055/s-2002-19758
LETTER
© Georg Thieme Verlag Stuttgart · New York

A Novel, Short and Repeatable Two-Carbon Ring Expansion Reaction by Thermo-Isomerization: Easy Synthesis of Macrocyclic Ketones

Matthias Nagel*a, Hans-Jürgen Hansena, Georg Fráterb
a Organisch-chemisches Institut der Universität, Winterthurerstr. 190, CH 8057- Zürich, Switzerland
Fax: +41(1)63568 12; e-Mail: mnagel@access.unizh.ch;
b Givaudan Research Ltd, Überlandstr. 138, CH-8600 Dübendorf, Switzerland
Fax: +41(1)8242926; e-Mail: georg.frater@givaudan.com;
Further Information

Publication History

Received 3 September 2001
Publication Date:
02 February 2007 (online)

Abstract

A novel two-carbon ring enlargement procedure, in which medium- and large-ring 1-vinylcycloalkanols are thermo-isomerized in a flow reactor system at temperatures of 600 °C to about 650 °C, produces the isomeric ring-expanded cycloalkanones directly and efficiently. This two-step ring expansion protocol can easily be applied several times successively. For e.g., the musk odorant cyclopentadecanone (Exaltone ®) is prepared from cycloundecanone in two repetitive cycles. Thermo-isomerization of the corresponding ethynylic cycloalkanols gives in moderate yields the bishomologous α,β-unsaturated macrocyclic (E)-2-cycloalkenones. A reaction mechanism via alkyl hydroxyallyl biradical intermediates is proposed.

    References

  • 1 Nagel M. Ph.D. Thesis   University of Zürich; Switzerland: 2001. 
  • For examples of so-called ”internal" (or also ”intramolecular") [1,5]-H shift reactions of the general retro-ene type under flash thermolysis conditions, see :
  • 2a Rippol J.-L. Vallée Y. Synthesis  1993,  659 
  • 2b Brown RFC. In Pyrolytic Methods in Organic Chemistry   Wasserman RH. Academic Press; New York: 1980.  Chap. 7. p.229-246  ; and references therein
  • 2c Gajewski JJ. Hydrocarbon Thermal Isomerizations   Academic Press; New York: 1981. 
  • 2d Karpf M. Angew. Chem., Int. Ed. Engl.  1986,  25:  414 ; Angew. Chem. 1986, 98, 413; and references therein
  • 4a Dimitrov V. Bratovanov S. Simova S. Kostova K. Tetrahedron Lett.  1994,  35:  6713 
  • 4b

    Typical Procedure for the Synthesis of Vinylcycloalkanols: Drying of cerium chloride: CeCl3 heptahydrate (100 g, 0.268 mol) was heated under reduced pressure (HV pump) in a Büchi Kugelrohr oven with continuous rotation of the bulb, at first with an air bath temperature of 70-80 °C for 5-6 h, then for 3-4 h at 110-120 °C, and finally for about 12 h (overnight) at 150-160 °C. The vaporized water was collected in cooling traps (liquid N2) and the thawed condensates were collected (about 34 mL). The dried (strongly hygroscopic) ivory-colored CeCl3 was stored under an argon atmosphere at r.t. in the dark. No loss in activity could be observed during storage over several months. Precomplexation of the ketone: Cyclododecanone (36.4 g, 0.2 mol) was, with stirring, added to a suspension of 5.0 g anhyd CeCl3 (0.02 mol, 0.1 mol equiv.) in anhyd THF (100 mL) at r.t. under an inert atmosphere. After 0.5-2 h, the yellowish colored suspension became homogenous and uniformly gel- (or yogurt-)like. To this mixture, of a 1 M solution of vinyl magnesium bromide (320 mL) in anhyd THF (0.32 mol, ca 1.6 mol equiv.) was added with stirring via a cannula within 10 min, whereby the temperature of the reaction mixture increased to 35-40 °C. After the exothermic phase of the reaction, stirring was continued for 20-30 min and the conversion of the starting ketone was monitored by TLC and GC analyses (normally more than 80% had been consumed after 15 min). Work-up: The now greyish-brown reaction mixture was poured into cold water (1 L ) and t-BuOMe (500 mL) were added. With stirring, a 10% aqueous HCl solution was added until the slimy or gel-like consistency of the mixture disappeared, and the mixture became clear and two-phased (pH < 3). The organic phase was washed several times with water, then with sat. NaHCO3 solution, and brine. After drying (MgSO4) and evaporation of the solvent under reduced pressure, the crude 1-vinylcyclododecanol 6 (GC purity about 90%) was purified either by bulb-to-bulb distillation (HV) and subsequent crystallization from hexane-t-BuOMe (95:5, v/v) or by chromatography on a short column (silica gel, eluent, hexane-t-BuOMe 97:3-95:5). Allylic alcohol 6 was obtained in yields of 75-85% as a colorless waxy solid (mp 53 °C). 1H NMR (300 MHz, CDCl3): 5.98 (dd, J = 10.8, 17.4 Hz, 1 H), 5.20 (dd, J = 1.4, 17.4 Hz, 1 H), 5.01 (dd, J = 1.4, 10.8 Hz, 1 H), 1.9-1.2 (m, 23 H). 13C NMR (75 MHz, CDCl3): 145.3 (d); 111.0 (t); 75.3 (s); 34.6(2), 26.3(2), 25.9, 22.5(2), 22.1(2), 19.5(2)(6 t). EI-MS (GC/MS): 210.2 (2, M + ), 192.2 (50, M - 18), 77.7(98), 67(100), 55(97). Also see:

  • 4c Marcou A. Normant H. Bull. Soc. Chim. Fr.  1965,  3491 
  • 4d Herz W. Juo R.-R. J. Org. Chem.  1985,  50:  618 
  • 4e

    Ref. 6a.

  • The thermo-isomerization process was performed in flow reactor systems with different dimensions: e.g., a quartz tube reactor (40 cm length, 22 mm, and 40 mm i.d., respectively) heated by a tube furnace (35 cm single temperature zone, in a nearly horizontal position), cf. also:
  • 5a Nagel M. Diploma Thesis   University of Zürich; Switzerland: 1998. 
  • 5b Nagel M. Hansen H.-J. Helv. Chim. Acta  2000,  83:  1022 
  • 5c

    Typical Procedure: After evacuation of the apparatus with a high-vacuum oil pump, the starting material (typically 0.5-2 g) was distilled slowly (within 10-20 min, about 5-20 g/h) through the preheated reactor tube (contact times estimated at about 1-2 s). A flow of inert gas (N2 or Ar) was adjusted from 15 mL/min to over 50 mL/min (1-3 L/h). At the end of the reactor unit the high boiling isomerization products were collected in the first cooling trap at about 0 °C (85-90% recovery), and the more volatile side products in subsequent traps, which were cooled to lower temperatures. By adding filling materials into the reactor, surface-catalyzed side reactions (e.g. dehydration) become predominant (cf. ref. [2b] and also ref. [13] ). For more general reviews on short contact time reactions and synthetic applications of gas phase flash vacuum pyrolysis techniques, see also:

  • 5d McNab H. Contemp. Org. Synth.  1996,  3:  373 ; and references therein
  • 5e Cadogen JIG. Hickson CL. McNab H. Tetrahedron  1986,  42:  2135 
  • 5f Schiess P. Thermochim. Acta  1987,  112:  31 ; and references therein
  • 5g Wiersum UE. Alrdrichimica Acta  1984,  17:  31 
  • For syntheses of 7, see e.g.:
  • 6a Galatsis P. Millan SD. Faber T. J. Org. Chem.  1993,  58:  1215 
  • 6b Bienz S. Hesse M. Helv.Chim. Acta  1987,  70:  2146 
  • 6c Drotloff H. Rotter H. Emeis D. Moeller M. J. Am. Chem. Soc.  1987,  109:  7797 
  • 6d Porter NA. Chang VH.-T. Magnin DR. Wright BT. J. Am. Chem. Soc.  1988,  110:  3554 
  • 6e Porter NA. Magnin DR. Wright BT. J. Am. Chem. Soc.  1986,  108:  2787 
  • 6f Wender PA. Sieburth McNS. Petraitis JJ. Singh SK. Tetrahedron  1981,  37:  3967 
  • 6g Karpf M. Dreiding AS. Helv. Chim. Acta  1975,  58:  2409 
  • 6h Mühlstädt M. Gräfe J. Chem. Ber.  1967,  100:  223 
  • 6i Müller E. Bauer M. Justus Liebigs Ann. Chem.  1962,  654:  92 
  • For syntheses of 9, see:
  • 7a Weiper-Idelmann A. Kahmen M. Schäfer HJ. Gockeln M. Acta Chem. Scand.  1998,  52:  672 
  • 7b Nishino M. Kondo H. Miyake A. Chem. Lett.  1973,  667 
  • 8a Ruzicka L. Helv. Chim. Acta  1926,  9:  245 
  • 8b Mathur HH. Bhattacharyya SC. J. Chem. Soc.  1963,  114 
  • 8c Motoda O. Chem. Abstr.  1950,  5828 
  • 8d Williams AS. Synthesis  1999,  1707 ; and references therein
  • 9a Baldwin JE. Vollmer HR. Lee V. Tetrahedron Lett.  1999,  40:  5401 
  • 9b Satoh T. Itoh N. Gengyo K. Takada S. Asakawa N. Tetrahedron  1994,  50:  11839 
  • 9c Hashimoto N. Aoyama T. Shioiri T. Chem. Pharm. Bull.  1982,  30:  119 
  • 9d Karpf M. Dreiding AS. Helv. Chim. Acta  1975,  58:  2409 
  • 9e Taguchi H. Yamamoto H. Nozaki H. J. Am. Chem. Soc.  1974,  96:  6510 
  • 9f Kirchhof W. Stumpf W. Franke W. Liebigs Ann. Chem.  1965,  681:  32 
  • 9g Parham WE. Sperley RJ. J. Org. Chem.  1967,  926 ; see also ref.
  • For leading references to Exaltone ®(12), see:
  • 10a Fráter G. Bajgrowicz JA. Kraft P. Tetrahedron  1998,  54:  7633 
  • 10b Fráter G. Lamparsky D. In Perfumes: Art, Science and Technology   Müller PM. Lamparsky D. Elsevier; London, New York: 1991.  Chap. 20. p.533-555  
  • 10c Ohloff G. Helv. Chim. Acta  1992,  75:  2041 ; and literature cited therein
  • 10d Ohloff G. Riechstoffe und Geruchssinn. Die molekulare Welt der Düfte   Springer; Berlin: 1990.  Chap. 9. p.195-219  
  • 10e Mookherjee BD. Wilson RA. In Fragrance Chemistry: The Science of the Sense of Smell   Theimer ET. Academic Press; New York: 1982.  Chap. 12. p.433-494  
  • 10f Bienz S. Hesse M. Helv. Chim. Acta  1988,  71:  1704 ; see also ref.
  • 10g Suginome H. Yamada S. Tetrahedron Lett.  1987,  28:  3963 
  • 10h Feldhues M. Schäfer HJ. Tetrahedron  1986,  42:  1285 
  • 10i Mehta G. Rao KS. Tetrahedron Lett.  1984,  25:  1839 
  • 10k Fehr Ch. Helv. Chim. Acta  1983,  66:  2512 
  • 10l Kato T. Kondo H. Miyake A. Bull. Chem. Soc. Jpn.  1980,  53:  823 
  • 10m Karpf M. Dreiding AS. Helv. Chim. Acta  1977,  60:  3045 
  • To the best of our knowledge, this two-carbon ring enlargement procedure is one of the shortest repeatable ring expansion reactions applied to carbocyclic systems: Examples of preparatively useful and efficiently repeatable ring expansion reactions by more than one carbon atom in carbocyclic systems are only rarely reported in the literature. For a definition and examples, see:
  • 11a Heimgartner H. Chimia  1980,  34:  333 ; and references therein
  • 11b Hesse M. Ring Enlargement in Organic Chemistry   VCH; Weinheim, Germany: 1990.  Chap. 5. p.73-95  ; and references therein
  • 12 Thies RW. Billigmeier JE. J. Am. Chem. Soc.  1974,  96:  200 ; and references therein
  • 13a Failes RL. Stimson VR. In The Chemistry of the Hydroxy Group   Patai S. Wiley; Chichester: 1980.  Chap. 11. p.449-468  ; and references therein.
  • 13b Grignard V. Chambret F. C. R. Hebd. Acad.Sci.  1926,  182:  299 
  • 13c Holmes JL. Lossing FP. J. Am. Chem. Soc.  1982,  104:  2648 
  • 13d Chuchani G. Rotinov A. Dominguez R. Int. J. Chem. Kinet.  1999,  31:  401 
  • 14 For a recent general survey and leading references, see: Hudlicky T. Becker DA. Fan RL. Kozhushkov SI. In Houben-Weyl   Vol. E17c:  de Meijere A. Thieme; Stuttgart: 1997.  p.2538-2565  
  • See also:
  • 15a Gutsche CD. Redmore D. Carbocyclic Ring Expansion Reactions   Academic Press; New York: 1968.  Chap. 9. p.161-173  
  • 15b Gajewsky JJ. Hydrocarbon Thermal Isomerizations   Academic Press; New York: 1982.  p.81-87 and 177-185  
  • 15c Salaün J. In The Chemistry of the Cyclopropyl Group   Patai S. Rappoport Z. Wiley; New York: 1987.  p.809-878  
  • 15d Baldwin JE. In The Chemistry of the Cyclopropyl Group   Vol 2:  Rappoport Z. Wiley; Chichester: 1995.  p.469-494  
  • 15e Salaün J. Top. Curr. Chem.  2000,  207:  1-67  
  • 15f Trost BM. Bogdanowicz MJ. J. Am. Chem. Soc.  1973,  95:  5311 
  • 15g Salaün J. Ollivier J. Nouv. J. Chim.  1981,  5:  587 
  • 15h Salaün J. Chem. Rev.  1983,  83:  619 ; and references therein
  • For kinetic investigations, see:
  • 16a Trost BM. Scudder PH. J. Org. Chem.  1981,  46:  506 
  • 16b Mc Gaffin G. de Meijere A. Walsh R. Chem. Ber.  1991,  124:  939 ; and references therein.
  • For theoretical studies, see:
  • 17a Baldwin JE. J. Comput. Chem.  1998,  19:  222 
  • 17d Nendel M. Sperling D. Wiest O. Houk KN. J. Org. Chem.  2000,  65:  3259 
  • For 22 see:
  • 20a Leonhard NJ. Owens FH. J. Am. Chem. Soc.  1958,  80:  6039 
  • 20b Stork G. MacDonald TL. J. Am. Chem. Soc.  1975,  97:  1264 
  • For 24 see:
  • 21a Prelog V. Frenkiel L. Kobelt M. Barman P. Helv. Chim. Acta  1947,  30:  1741 
  • 21b Stoll M. Rouvé A. Helv. Chim. Acta  1947,  30:  1822 
  • 21c Zountsas J. Meier H. Liebigs Ann. Chem.  1982,  1366 
  • 21d Engman L. J. Org. Chem.  1988,  53:  4031 
  • 21e Tanaka K. Ushio H. Yasuyuki K. Suzuki H. J. Chem. Soc., Perkin Trans. 1  1991,  1445 
  • 21f Butlin RJ. Linney ID. Mahon MF. Tye H. Wills M. J. Chem. Soc., Perkin Trans. 1  1996,  95 ; selected spectroscopic data: For 22: 1H NMR (300 MHz, CDCl3): 6.83 (dt, J = 15.8, 7.4 Hz, 1 H), 6.20 (dt, J = 15.8, 1.3 Hz, 1 H), 2.53-2.48 (m, 2 H), 2.30-2.26 (m, 2 H), 1.80-1.67 (m, 2 H), 1.58-1.52 (m, 2 H), 1.45-1.2 (m, 14 H). 13C NMR (75 MHz, CDCl3): 202.1 (s), 148.2, 130.3 (2 d), 40.4, 31.4, 26.6, 26.3, 26.2, 26.0, 25.8, 25.7, 25.4, 25.0, 24.9 (11 t). For 24: 1H NMR (300 MHz, CDCl3): 6.81 (td, J = 15.7, 7.5 Hz, 1 H), 6.19 (dt, J = 15.7, 1.3 Hz, 1 H), 2.52-2.47 (m, 2 H), 2.30-2.23 (m, 2 H), 1.72-1.44 (m, 4H), 1.4-1.2 (m, 16 H). 13C NMR (75 MHz, CDCl3): 201.7 (s), 147.9, 130.7 (2 d), 40.0, 31.6, 26.9, 26.8, 26.7, 26.6, 26.5, 26.2, 26.0, 25.4, 25.2 (12 t).
  • Tetradecadienone 23 was found to be a naturally occurring compound in the defense secretions produced by soldier termites:
  • 22a Prestwich GD. Kaib M. Wood WF. Meinwald J. Tetrahedron Lett.  1975,  16:  4701 
  • 22b Spanton SG. Prestwich GD. Tetrahedron  1982,  38:  1921 
  • For examples of (±)-muscone syntheses via enone 24, see:
  • 23a Stoll M. Chimia  1948,  2:  217 
  • 23b Stoll M. Commarmont K. Helv. Chim. Acta  1948,  31:  554 
  • 23c Mookherjee BD. Patel RR. Ledig WR. J. Org. Chem.  1971,  36:  4124 
  • 23d Korzienowsky SH. Vanderbilt DP. Hendry LB. Org. Prep. Proced. Int.  1976,  8:  81 
  • 23e Nokami J. Kusumoto Y. Jinnai K. Kawada M. Chem. Lett.  1977,  715 
  • 23f Takahashi T. Nagashima T. Tsuij J. Tetrahedron Lett.  1981,  22:  1359 
  • 23g Sakane S. Maruoka K. Yamamoto H. Tetrahedron Lett.  1983,  24:  943 
  • 23h Asaoka M. Abe M. Takei H. Bull. Chem. Soc. Jpn.  1985,  58:  2145 
  • 23i Kabbara J. Flemming S. Nickisch K. Neh H. Westermann J. Chem. Ber.  1994,  127:  1489 
  • 23k

    See also ref. [7a]

  • For asymmetric muscone syntheses from enone 24, see:
  • 24a Nelson KA. Mash EA. J. Org. Chem.  1986,  51:  2721 
  • 24b Tanaka K. Matsui J. Suzuki H. J. Chem. Soc., Perkin Trans 1  1993,  153 ; and references therein
  • 24c Tanaka K. Matsui J. Somemiya K. Suzuki H. Synlett  1994,  351 
  • 24d Yamaguchi M. Shiraishi T. Hirama M. J. Org. Chem.  1996,  61:  3520 
  • 24e Alexakis A. Benheim C. Fournioux X. Van den Heuvel A. Levêque J.-M. March S. Rosset S. Synlett  1999,  11:  1811 
  • 24f Alexakis A. Chimia  2000,  54:  55 
  • 25 Hiyama T. Mishima T. Kitatani K. Nozaki H. Tetrahedron Lett.  1974,  3297 
3

All mentioned tertiary cyclic vinyl substituted alcohols as well as the ethynyl substituted alcohols were synthesized from the corresponding cycloalkanones by addition of vinyl or ethynyl magnesium bromide according to the general procedure described in ref. 4.

18

A mechanism via a free radical reaction is also involved in a recent two-carbon ring expansion procedure where a homolytic β-scission occurs in 1-alkenylcycloalkoxy radical systems, see ref. [6a] Selected characteristic data of enones 19. 1H NMR (300 MHz, CDCl3): 6.35 [dd, J = 17.5, 10, H-C(2)], 6.25 [dd, J = 17.5, 1.5, H trans -C(1)], 5.80 [dd, J = 10, 1.5, H cis -C(1)], 2.60 [t, J = 7.5, H2-C(4)]; 0.90-0.85 (t-type m), [H3C-(ω)]. 13C NMR (75 MHz): 201 [s, C(3)], 136.5 [d, C(2)], 127.5 [t, C(1)], 39.5 [t, C(4)], 13.5 [q, C(ω)].

19

Addition of a ethynyl magnesium bromide solution in analogy to ref. [4]