Sleep Breath 2001; 05(4): 193-206
DOI: 10.1055/s-2001-18808
EMERGING RESEARCH

Copyright © 2001 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA. Tel.: +1(212) 584-4662

New Technologies to Detect Static and Dynamic Upper Airway Obstruction During Sleep

Josep M. Montserrat1 , Ramon Farré2 , Daniel Navajas2
  • 1Servei de Pneumologia i Al•lèrgia Respiratòria, Hospital Clínic
  • 2Unitat Biofísica i Bioenginyeria, Facultat de Medicina, Institut d'Investigacions Biomediques August Pi Sunyer, Universitat de Barcelona, Barcelona, Spain
Further Information

Publication History

Publication Date:
05 December 2001 (online)

ABSTRACT

Increase in upper airway resistance is the main patho-physiological feature in the obstructive breathing disorders during sleep. Upper airway events may be divided into two main groups: static obstruction (apneas) and dynamic obstruction (hypopneas, flow limitation, and snoring). This classification is useful to provide better information about the patho-physiological mechanisms of obstruction and to better define the diagnostic tools necessary for detecting abnormal respiratory events during sleep. Detection of dynamic obstruction requires sensors with a good frequency response. As thermistors have a poor dynamic response, they are not efficient in detecting the dynamic obstruction but are good enough to detect static obstruction. Nasal prongs (NP) connected a to pressure transducer and the impedance signal measured by the forced oscillation technique (FOT) are relatively new tools to noninvasively investigate dynamic upper airflow obstruction during sleep. FOT provides a direct index of the magnitude of airway obstruction and, therefore, of the upper airway patency, even under conditions of no flow (apneas). NP are aimed at assessing flow. Thus, both techniques have a different scope. The main advantages of NP are that they are easy to use and do not require sophisticated technology, while FOT needs a more complex instrumentation. For clinical routine studies NP are probably the best and simplest method for assessing the different respiratory events during sleep. However, FOT would be particularly useful in selected applications such as assessing upper airway patency in some central apneas; interpreting the irregular pattern of breathing during REM sleep; in better characterizing the inspiratory flow-limited breaths classified as intermediate; and in studying upper airway mechanics.

REFERENCES

  • 1 Phillipson E A. Sleep apnea. A major public health problem.  N Engl J Med . 1993;  328 1271-1273
  • 2 Gould G A, Whyte K F, Rhind G B. The sleep hypopnoea syndrome.  Am Rev Respir Dis . 1988;  137 895-898
  • 3 Remmers J E, DeGroot W J, Sauerland E K, Anch A M. Pathogenesis of upper airway occlusion during sleep.  J Appl Physiol . 1978;  44 931-938
  • 4 White P D. Pathophysiology of obstructive sleep apnoea.  Thorax . 1995;  50 797-804
  • 5 Kimoff R J, Cheong T H, Olha A E. Mechanisms of apnoea termination in obstructive sleep apnoea: role of chemoreceptor vs.  mechanoreceptor stimuli. Am J Respir Crit Care Med . 1994;  149 707-714
  • 6 Lugaresi E, Mondini S, Zuccani M, Montagna P, Cirignotta F. Staging of heavy snorers' disease: a proposal.  Bull Eur Physiopathol Respir . 1983;  19 590-594
  • 7 Guilleminault C, Stoohs R, Duncan S. Snoring (I). Daytime sleepiness in regular heavy snorers.  Chest . 1991;  99 40-48
  • 8 Guilleminault C, Stoohs R, Clerk A, Simmons J, Labanowski M. From obstructive sleep apnea syndrome to upper airway resistance syndrome: consistency of daytime sleepiness.  Sleep . 1992;  15 S13-S16
  • 9 Guilleminault C, Stoohs R, Clerk A, Cetel M, Maistros P. A cause of excessive daytime sleepiness. The upper airway resistance syndrome.  Chest . 1993;  104 781-787
  • 10 Farré R, Montserrat J M, Rotger M, Ballester E, Navajas D. Accuracy of thermistors and thermocouples as flow-measuring devices for detecting hypopneas.  Eur Respir J . 1998;  11 179-182
  • 11 Clark S, Wilson C R, Satoh M, Pegelow D, Dempsey J A. Assessment of inspiratory flow limitation invasively and noninvasively during sleep.  Am J Respir Crit Care Med . 1998;  158 713-722
  • 12 Condos R, Norman R G, Krihnasamy I, Peduzzi N, Goldring R M, Rappoport D M. Flow limitation as a noninvasive assessment of residual upper airway resistance during continuous positive airway pressure therapy of obstructive sleep apnea.  Am J Respir Crit Care Med . 1994;  150 475-480
  • 13 Montserrat J M, Ballester E, Olivi H. Time-course of stepwise CPAP titration. Behaviour of respiratory and neurological variables.  Am J Respir Crit Care Med . 1995;  152 1854-1859
  • 14 Norman R G, Ahmed M M, Walsleben J A, Rapoport D M. Detection of respiratory events during NPSG: nasal cannula/pressure sensor versus thermistor.  Sleep . 1997;  20 1175-1185
  • 15 Montserrat J M, Farré R, Ballester E, Felez M, Pastó M, Navajas D. Evaluation of nasal prongs for estimating nasal flow.  Am J Respir Crit Care Med . 1997;  155 211-215
  • 16 Ballester E, Badia J R, Hernández L, Farré R, Navajas D, Montserrat J M. Nasal prongs in the detection of sleep-related disordered breathing on the sleep apnea hypopnea syndrome.  Eur Respir J . 1998;  11 880-883
  • 17 Farré R, Rigau J, Montserrat J M, Ballester E, Navajas D. Relevance of linearizing nasal prongs for assessing hypopneas and flow limitation during sleep.  Am J Respir Crit Care Med . 2001;  163 494-497
  • 18 Sériès F, Marc I. Nasal pressure recording in the diagnosis of sleep apnoea hypopnoea syndrome.  Thorax . 1999;  54 506-510
  • 19 Hernández L, Ballester E, Farré R. Performance of nasal prongs in sleep studies. Spectrum of flow related events.  Chest . 2001;  119 442-450
  • 20 Lorino A M, Lorino H, Dahan E. Effect of nasal prongs on nasal airflow resistance.  Chest . 2000;  118 366-371
  • 21 Hosselet J J, Norman R G, Ayappa I, Rapoport D M. Detection of flow limitation with a nasal cannula/pressure transducer system.  Am J Respir Crit Care Med . 1998;  157 1461-1467
  • 22 Deegan P C, McNicholas W T. Effect of nCPAP on cardiac function awake and asleep.  J Sleep Res . 1995;  4 59-63
  • 23 Naughton M T, Rahman M A, Hara K, Floras J S, Bradley T D. Effect of continuous positive airway pressure on intrathoracic and left ventricular transmural pressures in patients with congestive heart failure.  Circulation . 1995;  91 1725-1731
  • 24 Stradling J R, Barbour C, Glennon J, Langford B A, Crosby J H. Which aspects of breathing during sleep influence the overnight fall of blood pressure in a community population?.  Thorax . 2000;  55 393-398
  • 25 Montserrat J M, Farré R, Hernández L, Ballester E, Puig-Dupré M, Navajas D. Systemic blood pressure and end-tidal CO2 during prolonged periods of flow limitation during sleep.  Eur Respir J . 2000;  16(suppl 31) 334s
  • 26 Edwards N, Blyton D M, Kirjavainen T, Kesby G J, Sullivan C E. Nasal continuous positive airway pressure reduces sleep-induced blood pressure increments in pre-eclampsia.  Am J Respir Crit Care Med . 2000;  162 252-257
  • 27 Meurice J C, Paquereau J, Denjean A, Patte F, Series F. Influence of correction of flow limitation on continuous positive airway pressure efficiency in sleep apnoea/hypopnoea syndrome.  Eur Respir J . 1998;  11 1121-1127
  • 28 Dubois A B, Brody A W, Lewis D H, Burgess B F. Oscillation mechanics of lungs and chest in man.  J Appl Physiol . 1956;  8 587-594
  • 29 Farré R, Peslin R, Rotger M, Navajas D. Inspiratory dynamic obstruction detected by forced oscillation during CPAP. A model study.  Am J Respir Crit Care Med . 1997;  155 952-956
  • 30 Navajas D, Farré R, Rotger M, Badia R, Puig-de-Ventós M, Montserrat J M. Assessment of airflow obstruction during CPAP by means of forced oscillation in patients with sleep apnea.  Am J Respir Crit Care Med . 1998;  157 1526-1530
  • 31 Badia J R, Farré R, Kimoff R J. Clinical application of the forced oscillation technique for CPAP titration in the sleep apnea/hypopnea syndrome.  Am J Respir Crit Care Med . 1999;  160 1550-1554
  • 32 Badia J R, Farré R, Montserrat J M. Forced oscillation technique for the evaluation of severe sleep apnea/hypopnea syndrome: a pilot study.  Eur Respir J . 1998;  11 1128-1134
  • 33 Lorino A M, Lofaso F, Duizabo D. Respiratory resistive impedance as an index of airway obstruction during nasal continuous positive airway pressure titration.  Am J Respir Crit Care Med . 1998;  158 1465-1470
  • 34 Randerath W J, Parys K, Feldmeyer F, Sanner B, Ruhle K H. Self-adjusting nasal continuous positive airway pressure therapy based on measurement of impedance: a comparison of two different maximum pressure levels.  Chest . 1999;  116 991-999
  • 35 Farré R, Rigau J, Montserrat J M, Ballester E, Navajas D. Evaluation of a simplified oscillation technique for assessing airway obstruction in sleep apnea.  Eur Respir J . 2001;  17 456-461
  • 36 Farré R, Rotger M, Montserrat J M, Navajas D. Analog circuit for real-time computation of respiratory mechanical impedance in sleep studies.  IEEE Trans Biomed Eng . 1997;  44 1156-1159
    >