Horm Metab Res 2001; 33(5): 270-275
DOI: 10.1055/s-2001-15120
Original Basic

© Georg Thieme Verlag Stuttgart · New York

Involvement of L-Triiodothyronine in Acetylcholine Metabolism in Adult Rat Cerebrocortical Synaptosomes

P. K. Sarkar 1, 2 , A. K. Ray 2
  • 1 Department of Biology, Rutgers University, Camden, New Jersey USA
  • 2 Department of Animal Physiology, Bose Institute, Calcutta India
Further Information

Publication History

Publication Date:
31 December 2001 (online)

Despite the recently emerging notion of thyroid-hormone involvement in neurotransmission in the adult mammalian brain, adequate evidence for a cellular basis of the process is still lacking. The present study indicates the involvement of thyroid hormones in cholinergic system of the adult rat cerebral cortex. Administration of L-triiodothyronine (T3, 0.025 to 4 µg/g) in single doses increased the synaptosomal acetylcholinesterase (AchE) and Mg2+-ATPase activity maximally at 24 hours in a dose-dependent way. Propylthiouracil (PTU)-treated hypothyroid rats showed a significant increase in AchE and Mg2+-ATPase activity compared to euthyroid rats. T3-treatment on hypothyroid rats decreased AchE activity in synaptosomes compared to the hypothyroid synaptosomal values. Mg2+-ATPase activity found in (PTU + T3)-treated group and T3-treated group remained high. These results predict that T3 stimulates acetylcholine (Ach) metabolism by increasing AchE activity as well as uptake of the released Ach through an increase in synaptosomal Mg2+-ATPase activity. This indicates a positive impact of T3 on the cholinergic system in the adult mammalian brain.

References

  • 1 Oppenheimer J H. Evolving concepts of thyroid hormone action.  Biochimie. 1999;  81 539-543
  • 2 Dussault J H, Ruel J. Thyroid hormones and brain development.  Annu Rev Physiol. 1987;  49 321-334
  • 3 Moskovkin G N, Kalman M, Kardos J, Yarigin K N, Hajos F. Effect of triiodothyronine on the muscarinic receptors and acetylcholinesterase activity of developing rat brain.  Int J Neurosci. 1989;  44 83-89
  • 4 Provost T L, Juarez de Ku L M, Zender C, Meserve L A. Dose- and age-dependent alterations in choline acetyltransferase (ChAT) activity, learning and memory, and thyroid hormones in 15- and 30-day old rats exposed to 1.25 or 12.5 PPM polychlorinated biphenyl (PCB) beginning at conception.  Prog Neuropsychopharmacol Biol Psychiatry. 1999;  23 915-928
  • 5 Atterwill C K, Kingsbury A K, Nicholls J, Prince A. Development of markers for cholinergic neurones in re-aggregate cultures of foetal rat whole brain in serum-containing and serum-free media: effects of triiodothyronine (T3).  Br J Pharmacol. 1984;  83 89-102
  • 6 Juarez de Ku L M, Sharma-Stokkermans M, Meserve L A. Thyroxine normalizes polychlorinated biphenyl (PCB) dose-related depression of choline acetyltransferase (ChAT) activity in hippocampus and basal forebrain of 15-day-old rats.  Toxicology. 1994;  94 19-30
  • 7 Landa M E, Gonzalez Burgos G, Cardinali D P. In vitro effect of thyroxine on cholinergic neurotransmission in rat sympathetic superior cervical ganglion.  Neuroendocrinology. 1991;  54 552-558
  • 8 Patel A J, Smith R M, Kingsbury A E, Hunt A, Balazs R. Effects of thyroid state on brain development: muscarinic acetylcholine and GABA receptors.  Brain Res. 1980;  198 389-402
  • 9 Oppenheimer J H. Thyroid hormone action at the cellular level.  Science. 1979;  203 971-979
  • 10 Henley W N, Koehnle T J. Thyroid hormones and the treatment of depression: an examination of basic hormonal actions in the mature mammalian brain.  Synapse. 1997;  27 36-44
  • 11 Dratman M B, Gordon J T. Thyroid hormones as neurotransmitters.  Thyroid. 1996;  6 639-647
  • 12 Mashio Y, Inada M, Tanaka K, Ishii H, Naito K, Nishikawa M, Takahashi K, Imura H. Synaptosomal T3 binding sites in rat brain: their localization on synaptic membrane and regional distribution.  Acta Endocrinol (Copenh). 1983;  104 134-138
  • 13 Sarkar P K, Ray A K. Specific binding of L-triiodothyronine modulates Na+-K+-ATPase activity in adult rat cerebrocortical synaptosomes.  Neuroreport. 1998;  9 1149-1152
  • 14 Sarkar P K, Ray A K. Synaptosomal T3 content in cerebral cortex of adult rat in different thyroidal states.  Neuropsychopharmacology. 1994;  11 151-155
  • 15 Thomas D R, Hailwood R, Harris B, Williams P A, Scanlon M F, John R. Thyroid status in senile dementia of the Alzheimer type (SDAT).  Acta Psychiatr Scand. 1987;  76 158-163
  • 16 Fylkesnes S I, Nygaard H A. Dementia and hypothyroidism.  Tidsskr Nor Laegeforen. 2000;  120 905-907
  • 17 Foley P B, Crocker A D. Dopamine agonist-mediated inhibition of acetylcholine release in rat striatum is modified by thyroid hormone status.  J Neurochem. 1993;  61 812-817
  • 18 Ahmed M T, Sinha A K, Pickard M R, Kim K D, Ekins R P. Hypothyroidism in the adult rat causes brain region-specific biochemical dysfunction.  J Endocrinol. 1993;  138 299-305
  • 19 Salvati S, Attorri L, Campeggi L M, Olivieri A, Sorcini M, Fortuna S, Pintor A. Effect of propylthiouracil-induced hypothyroidism on cerebral cortex of young and aged rats: lipid composition of synaptosomes, muscarinic receptor sites, and acetylcholinesterase activity.  Neurochem Res. 1994;  19 1181-1186
  • 20 Haigh J R, Noremberg K, Parsons S M. Acetylcholine active transport by rat brain synaptic vesicles.  Neuroreport. 1994;  5 773-776
  • 21 Ellman G L, Courtney K D, Andres V Jr, Featherstone R M. A new and rapid colorimetric determination of acetylcholinesterase activity.  Biochem Pharmacol. 1961;  7 88-95
  • 22 Sarkar P K, Ray A K. Synaptosomal action of thyroid hormone: changes in Na+-K+-ATPase activity in adult rat cerebral cortex.  Horm Metab Res. 1993;  25 1-3
  • 23 Vera J C. Measurement of microgram quantities of protein by a generally applicable turbidimetric procedure.  Anal Biochem. 1988;  174 187-196
  • 24 De S, Ray A K, Medda A K. Demonstration of hepatic cytosolic malic enzyme activity as a thyroid hormone sensitive physiologic parameter in a teleost, Heteropneustes fossilis bloch.  Horm Metab Res. 1988;  20 213-217
  • 25 Crantz F R, Silva J E, Larsen P R. An analysis of the sources and quantity of 3,5,3’-triiodothyronine specifically bound to nuclear receptors in rat cerebral cortex and cerebellum.  Endocrinology. 1982;  110 367-375
  • 26 Escobar del Rey F, Ruiz de Ona C, Bernal J, Obregon M J, Morreale de Escobar G. Generalized deficiency of 3,5,3’-triiodo-L-thyronine (T3) in tissues from rats on a low iodine intake, despite normal circulating T3 levels.  Acta Endocrinol (Copenh). 1989;  120 490-498
  • 27 Serrano-Lozano A, Morata P, Montiel M, Perez-Aguilar J P, Morell M. L-thyroxine and L-triiodothyronine in the cerebral tissues of the adult rat. Effect of hypothyroidism.  Rev Esp Fisiol. 1991;  47 141-145
  • 28 Baumgartner A, Hiedra L, Pinna G, Eravci M, Prengel H, Meinhold H. Rat brain type II 5’-iodothyronine deiodinase activity is extremely sensitive to stress.  J Neurochem. 1998;  71 817-826
  • 29 Guadano-Ferraz A, Escamez M J, Rausell E, Bernal J. Expression of type 2 iodothyronine deiodinase in hypothyroid rat brain indicates an important role of thyroid hormone in the development of specific primary sensory systems.  J Neurosci. 1999;  19 3430-3439
  • 30 Leonard J L, Silva J E, Kaplan M M, Mellen S A, Visser T J, Larsen P R. Acute post-transcriptional regulation of cerebrocortical and pituitary iodothyronine 5’-deiodinases by thyroid hormone.  Endocrinology. 1984;  114 998-1004
  • 31 Meyer E M, Cooper J R. Correlations between Na+-K+ ATPase activity and acetylcholine release in rat cortical synaptosomes.  J Neurochem. 1981;  36 467-475
  • 32 Stahl W L, Harris W E. Na+, K+-ATPase: structure, function, and interactions with drugs.  Adv Neurol. 1986;  44 681-693
  • 33 Kastrup J, Christensen N J. Lack of effects of thyroid hormones on muscarine cholinergic receptors in rat brain and heart.  Scand J Clin Lab Invest. 1984;  44 33-38

P. K. Sarkar

Department of Biology
Rutgers University

315 Penn Street, Camden
New Jersey 08102
USA


Phone: Phone:+ 1 (856) 225-6165

Fax: Fax:+ 1 (856) 225-6312

Email: E-mail:pksarkar@crab.rutgers.edu

    >