Anästhesiol Intensivmed Notfallmed Schmerzther 2001; 36(4): 205-212
DOI: 10.1055/s-2001-12747
ÜBERSICHT
© Georg Thieme Verlag Stuttgart · New York

Kreislaufmechanik bei intra-
und extraperitonealen minimal invasiven Eingriffen unter
CO2-Insufflation. Auswirkungen
im Niederdrucksystem

Intraperitoneal and Extraperitoneal CO2-Insufflation for Minimal Invasive Surgery. Impact on the Venous Low Pressure SystemR. Giebler, J. Peters
  • Abteilung für Anästhesiologie und Intensivmedizin
    Universitätsklinikum Essen
Further Information

Publication History

Publication Date:
31 December 2001 (online)

Zusammenfassung.

In vielen Studien wurden die hämodynamischen Veränderungen unter intraperitonealer CO2-Insufflation und der damit verbundenen intraabdominalen Druckerhöhung untersucht. Die Ergebnisse sind jedoch sehr unterschiedlich und scheinen u. a. beeinflusst zu sein von intravasalem Blutvolumen und der Körperposition. Mit der Betrachtung von abdominaler Vena cava inferior und umgebendem Abdomen als Starling'scher Widerstand für den venösen Rückfluss zum Herzen können jedoch die bei unterschiedlicher intraperitonealer Druckerhöhung auftretenden hämodynamischen Veränderungen größtenteils erklärt und scheinbare Widersprüche aufgelöst werden. Danach wird der Blutfluss über die Vena cava inferior als Funktion der Druckdifferenz zwischen stromaufwärts bestehendem intravasalen Venendruck und intrabdominalem Druck bzw. als Druckdifferenz zwischen stromaufwärts herrschendem venösen Druck und intrathorakalem (proximalen) Venendruck betrachtet.

Intraperitoneal and Extraperitoneal CO2-Insufflation for Minimal Invasive Surgery. Impact on the Venous Low Pressure System.

Several studies have addressed the cardiovascular effects of intraperitoneal carbon dioxide insufflation and increased intraabdominal pressure. The pathophysiology of this intervention is complex. Reported results apparently differ depending on which patients are studied and are affected by blood volume and/or positioning. With the Starling resistor concept of abdominal venous return in which, analogous to pulmonary vascular zones, flow through the inferior vena cava is considered a function of the pressure difference between upstream venous and either abdominal pressure or downstream intrathoracic caval vein pressure, different results reported in literature can be reconciled.

Literatur

  • 1 Joris J, Cigarini I, Legrand M, Jaquet N, de Groote D, Franchimont P, Lamy M. Metabolic and respiratory changes after cholecystectomy performed via laparotomy or laparoscopy.  Br J Anaesth. 1992;  69 341-345
  • 2 Goodale R L, Beebe D S, McNevin M P, Boyle M, Letourneau J G, Abrams J H, Cerra F B. Hemodynamic, respiratory, and metabolic effects of laparoscopic cholecystectomy.  Am J Surg. 1993;  166 533-537
  • 3 Heintz A, Strecker U, Walgenbach S, Junginger T. Ergebnisse der endoskopischen, retroperitonealen Adrenalektomie unter besonderer Berücksichtigung des intraoperativen Verlaufs.  Chirurg. 1997;  68 154-158
  • 4 Begos D G, Modlin I M. Laparoscopic cholecystectomy: from gimmick to gold standard.  J Clin Gastroenterol. 1994;  19 325-330
  • 5 Fernandez-Cruz L, Benarroch G, Torres E. Laparoscopic approach to the adrenal tumors.  J Laparoendosc Surg. 1993;  3 541-546
  • 6 Walz M K, Peitgen K, Hoermann R, Giebler R M, Mann K, Eigler F-W. Posterior retroperitoneoscopy as a new minimal invasive approach for adrenalectomy: results of 30 adrenalectomies in 27 patients.  World J Surg. 1996;  20 769-774
  • 7 Proye C A, Huart J Y, Cuvillier X D. Safety of the posterior approach in adrenal surgery: experience in 105 cases.  Surgery. 1993;  114 1126-1131
  • 8 Fitzgerald S D, Andrus C H, Baudendistel L J, Dahms T E, Kaminski D L. Hypercarbia during carbon dioxide pneumoperitoneum.  Am J Surg. 1992;  163 186-190
  • 9 Puri G D, Singh H. Ventilatory effects of laparoscopy under general anaesthesia.  Br J Anaesth. 1992;  68 211-213
  • 10 Bardoczky G I, Engelman E, Levarlet M, Simon P. Ventilatory effects of pneumoperitoneum monitored with continuous spirometry.  Anaesthesia. 1993;  48 309-311
  • 11 Mullet C E, Viale J P, Sagnard P E, Miellet C C, Ruynat L G, Counioux H C, Motin J P, Boulez J P, Dargent D M, Annat G J. Pulmonary CO2 elimination during surgical procedures using intra- or extraperitoneal CO2 insufflation.   Anesth Analg. 1993;  76 622-626
  • 12 Melville R J, Frizis H I, Forsling M L, LeQuesne L P. The stimulus for vasopressin release during laparoscopy.  Surg Gynecol Obstet. 1985;  161 253-256
  • 13 Hirvonen E A, Nuutinen L S, Vuolteenaho O. Hormonal responses and cardiac filling pressures in head-up or head-down position and pneumoperitoneum in patients undergoing operative laparoscopy.  Br J Anaesth. 1997;  78 128-133
  • 14 Kashtan J, Green J F, Parsons E Q, Holcroft J W. Hemodynamic effects of increased abdominal pressure.  J Surg Res. 1981;  30 249-255
  • 15 Barnes G E, Laine G A, Giam P Y, Smith E E, Granger H J. Cardiovascular responses to elevation of intra-abdominal hydrostatic pressure.  Am J Physiol. 1985;  248 R208-213
  • 16 Ivankovich A D, Miletich D J, Albrecht R F, Heyman H J, Bonnet R F. Cardiovascular effects of intraperitoneal insufflation with carbon dioxide and nitrous oxide in the dog.  Anesthesiology. 1975;  42 281-287
  • 17 Blobner M, Bogdanski, Kochs E, Henke J, Findeis A, Jelen-Esselborn S. Effects of intraabdominally insufflated carbon dioxide and elevated intraabdominal pressure on splanchnic circulation. An experimental study in pigs.  Anesthesiology. 1998;  89 475-482
  • 18 Odeberg S, Ljungqvist O, Svenberg T, Gannedahl P, Bäckdahl M, von Rosen A, Sollevi A. Haemodynamic effects of pneumoperitoneum and the influence of posture during anaesthesia for laparoscopic surgery.  Acta Anaesthesiol Scand. 1994;  38 276-283
  • 19 Hirvonen E A, Nuutinen L S, Kauko M. Hemodynamic changes due to Trendelenburg positioning and pneumoperitoneum during laparoscopic hysterectomy.  Acta Anaesthesiol Scand. 1995;  39 949-955
  • 20 Gannedahl P, Odeberg S, Brodin L-A, Sollevi A. Effects of posture and pneumoperitoneum during anaesthesia on the indices of left ventricular filling.  Acta Anaesthesiol Scand. 1996;  40 160-166
  • 21 Ho H S, Gunther R A, Wolfe B M. Intraperitoneal carbon dioxide insufflation and cardiopulmonary functions. Laparoscopic cholecystectomy in pigs.  Arch Surg. 1992;  127 928-933
  • 22 Windberger U, Siegl H, Woisetschläger R, Schrenk P, Podesser B, Losert U. Hemodynamic changes during prolonged laparoscopic surgery.  Eur Surg Res. 1994;  26 1-9
  • 23 Baird J E, Granger R, Klein R, Warriner C B, Phang P T. The effects of retroperitoneal carbon dioxide insufflation on hemodynamics and arterial carbon dioxide.  Am J Surg. 1999;  177 164-166
  • 24 Rademaker B M P, Bannenberg J J G, Kalkman C J, Meyer D W. Effects of pneumoperitoneum with Helium on hemodynamics and oxygen transport: a comparison with carbon dioxide.  J Laparoendoscop Surg. 1995;  5 15-20
  • 25 Kelman G R, Swapp G H, Smith I, Benzie R J, Gordon N L M. Cardiac output and arterial blood-gas tension during laparoscopy.  Brit J Anaesth. 1972;  44 1155-1162
  • 26 Marshall R L, Jebson P J R, Davie I T, Scott D B. Circulatory effects of carbon dioxide insufflation of the peritoneal cavity for laparoscopy.  Br J Anaesth. 1972;  44 680-684
  • 27 Marshall R L, Jebson P J R, Davie I T, Scott D B. Circulatory effects of peritoneal insufflation with nitrous oxide.  Br J Anaesth. 1972;  44 1183-1187
  • 28 Ekmann L G, Abrahamsson J, Biber B, Forssman L, Milsom I, Sjöqvist B-A. Hemodynamic changes during laparoscopy with positive end-expiratory pressure ventilation.  Acta Anaesthesiol Scand. 1988;  32 447-453
  • 29 Westerband A, van de Water J M, Amzallag M, Lebowitz P W, Chardavoyne R, Abou-Taleb A, Wang X, Wise L. Cardiovascular changes during laparoscopic cholecystectomy.  Surg Gynecol Obstet. 1992;  175 535-538
  • 30 Cunningham A J, Turner J, Rosenbaum S, Rafferty T. Transoesophageal echocardiographic assessment of haemodynamic function during laparoscopic cholecystectomy.  Br J Anaesth. 1993;  70 621-625
  • 31 Safran D, Sgambati S, Orlando III R. Laparoscopy in high-risk cardiac patients.  Surg Gynecol Obstet. 1993;  176 548-554
  • 32 Ho H S, Saunders C J, Corso F A, Wolfe B M. The effects of CO2 pneumoperitoneum on hemodynamics in hemorrhaged animals.  Surgery. 1993;  114 381-388
  • 33 Gauer O H, Henry J P, Sieker H O. Changes in central venous pressure after moderate hemorrhage and transfusion in man.  Circ Res. 1956;  4 79-90
  • 34 Guyton A C, Lindsey A W, Abernathy B, Richardson T. Venous return at various right atrial pressures and the normal venous return curve.  Am J Physiol. 1957;  189 609-615
  • 35 Gauer O H, Henry J P. Circulatory basis of fluid volume control.  Physiol Rev. 1963;  43 423-481
  • 36 Arndt J O. The low pressure system: The integrated function of veins.  Eur J Anaesthesiol. 1986;  3 343-370
  • 37 Gauer O H, Thron H L. Postural changes in the circulation.  Handbook of Physiology, Section 2: Circulation, Vol. III. Washington, American Physiological Society. 1965;  67 2409-2439
  • 38 Doppman J, Rubinson R M, Rockoff D, Vasko J S, Shapiro R, Morrow A G. Mechanism of obstruction of the infradiaphragmatic portion of the inferior vena cava in the presence of increased intra-abdominal pressure.  Invest Radiol. 1966;  1 37-53
  • 39 Wachsberg R H, Sebastiano L L S, Levine C D. Narrowing of the upper abdominal inferior vena cava in patients with elevated intraabdominal pressure.  Abdom Imaging. 1998;  23 99-102
  • 40 Takata M, Wise R A, Robotham J L. Effects of abdominal pressure on venous return: abdominal vascular zone conditions.  J Appl Physiol. 1990;  69 1961-1972
  • 41 Kitano Y, Takata M, Sasaki N, Zhang Q, Yamamoto S, Miyasaka K. Influence of increased abdominal pressure on steady-state cardiac performance.  J Appl Physiol. 1999;  86 1651-1656
  • 42 Guyton A C, Adkins L H. Quantitative aspects of the collapse factor in relation to venous return.  Am J Physiol. 1954;  177 523-527
  • 43 Banister J, Torrance R W. The effects of the tracheal pressure upon flow: Pressure relations in the vascular bed of isolated lungs.  Quart J Exptl Physiol. 1960;  45 352-367
  • 44 West J, Dollery C, Naimark A. Distribution of blood flow in isolated lung: relation to vascular and alveolar pressures.  J Appl Physiol. 1964;  19 713-724
  • 45 Duomarco J L, Rimini R. Energy and hydraulic gradients along systemic veins.  Am J Physiol. 1954;  178 215-220
  • 46 Permutt S, Riley R L. Hemodynamics of collapsible vessels with tone: the vascular waterfall.  J Appl Physiol. 1963;  18 924-932
  • 47 Giebler R M, Behrends M, Steffens T, Walz M K, Peitgen K, Peters J. Intraperitoneal and retroperitoneal carbon dioxide insufflation evoke different effects on caval vein pressure gradients in humans: Evidence for the Starling resistor concept of abdominal venous return.  Anesthesiology. 2000;  92 1568-1580
  • 48 Wexler L, Bergel D H, Gabe I T, Makin G S, Mills C J. Velocity of blood flow in normal human venae cavae.  Circ Res. 1968;  23 349-359
  • 49 Brower R, Wise R A, Hassapoyannes C, Bromberger-Barnea B, Permutt S. Effect of lung inflation on lung volume and pulmonary venous flow.  J Appl Physiol. 1985;  58 954-963
  • 50 Giebler R M, Kabatnik M, Stegen B H, Scherer R U, Thomas M, Peters J. Retroperitoneal and intraperitoneal CO2 insufflation have markedly different cardiovascular effects.  J Surg Res. 1997;  68 153-160
  • 51 Koehler R C, McDonald B W, Krasney J A. Influence of CO2 on cardiovascular response to hypoxia in conscious dogs.  Am J Physiol. 1980;  239 H545-H558
  • 52 Giebler R M, Walz M K, Peitgen K, Scherer R U. Hemodynamic changes after retroperitoneal CO2 insufflation for posterior retroperitoneoscopic adrenalectomy.  Anesth Analg. 1996;  82 827-831

Dr. med. Reiner Giebler
Prof. Dr. med. Jürgen Peters

Abteilung für Anästhesiologie und Intensivmedizin
Universitätsklinikum Essen

Hufelandstraße 55

45122 Essen

Email: reiner.giebler@uni-essen.de

    >