Semin Liver Dis 2000; Volume 20(Number 01): 0069-0084
DOI: 10.1055/s-2000-9504
Copyright © 2000 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA. Tel.: +1(212) 584-4663

Biochemical and Immunologic Properties of the Nonstructural Proteins of the Hepatitis C Virus: Implications for Development of Antiviral Agents and Vaccines

Raffaele De Francesco, Petra Neddermann, Licia Tomei, Christian Steinkühler, Paola Gallinari, Antonella Folgori
  • Istituto di Ricerche di Biologia Molecolare, ``P. Angeletti,'' Pomezia, Rome, Italy
Further Information

Publication History

Publication Date:
31 December 2000 (online)

ABSTRACT

Infection with the hepatitis C virus (HCV) is the major cause of non-A, non-B hepatitis worldwide. The viral genome, a positive-sense, single-stranded, 9.6-kb long RNA molecule, is translated into a single polyprotein of about 3,000 amino acids. The viral polyprotein is proteoytically processed to yield all the mature viral gene products. The genomic order of HCV has been determined to be C → E1 → E2 → p7 → NS2 → NS3 → NS4A → NS4B → NS5A → NS5B. C, E1, and E2 are the virion structural proteins. Whereas the function of p7 is currently unknown, NS2 to NS5B are thought to be the nonstructural proteins. Generation of the mature nonstructural proteins relies on the activity of viral proteinases. Cleavage at the NS2-NS3 junction is accomplished by a metal-dependent autocatalytic proteinase encoded within NS2 and the N-terminus of NS3. The remaining downstream cleavages are effected by a serine proteinase contained also within the N-terminal region of NS3. NS3, in addition, contains an RNA helicase domain at its C-terminus. NS3 forms a heterodimeric complex with NS4A. The latter is a membrane protein that acts as a cofactor of the proteinase. Although no function has yet been attributed to NS4B, NS5A has been recently suggested to be involved in mediating the resistance of the HCV to the action of interferon. Finally, the NS5B protein has been shown to be the viral RNA-dependent RNA polymerase. This article reviews the current understanding of the structure and the function of the various HCV nonstructural proteins with particular emphasis on their potential as targets for the development of novel antiviral agents and vaccines.

REFERENCES

  • 1 Lohmann V, Koch J O, Bartenschlager R. Processing pathways of the hepatitis C virus proteins.  J Hepatol . 1996;  24 11-19
  • 2 Grakoui A, Wychowski C, Lin C. Expression and identification of hepatitis C virus polyprotein cleavage products.  J Virol . 1993;  67 1385-1395
  • 3 Tomei L, Failla C, Santolini E. NS3 is a serine proteinase required for processing of hepatitis C virus polyprotein.  J Virol . 1993;  67 4017-4026
  • 4 Bartenschlager R, Ahlborn-Laake L, Mous J. Nonstructural protein 3 of the hepatitis C virus encodes a serine-type proteinase required for cleavage at the NS3/4 and NS4/5 junctions.  J Virol . 1993;  67 3835-3844
  • 5 Manabe S, Fuke I, Tanishita O. Production of nonstructural proteins of hepatitis C virus requires a putative viral proteinase encoded by NS3.  Virology . 1994;  198 636-644
  • 6 D'Souza E DA, O'Sullivan E, Amphlett E M. Analysis of NS3-mediated processing of the hepatitis C virus non-structural region in vitro.  J Gen Virol . 1994;  75 3469-3476
  • 7 Failla C, Tomei L, De Francesco R. Both NS3 and NS4A are required for proteolytic processing of hepatitis C virus nonstructural proteins.  J Virol . 1994;  68 3753-3760
  • 8 Kolykhalov A, Mihalik K, Feinstone S M. Four enzymaticactivities and the 3′conserved sequence are essential for HCV replication. 6th International Symposium on Hepatitis C & Related Viruses, Bethesda, MD, 1999
  • 9 Grakoui A, McCourt D W, Wychowski C. A second hepatitis C virus-encoded proteinase.  Proc Natl Acad Sci USA . 1993;  90 10583-10587
  • 10 Hijikata M, Mizushima H, Akagi T. Two distinct proteinase activities required for the processing of a putative nonstructural precursor protein of hepatitis C virus.  J Virol . 1993;  67 4665-4675
  • 11 Reed K E, Grakoui A, Rice C M. Hepatitis C virus-encoded NS2-3 proteinase: cleavage-site mutagenesis and requirements for bimolecular cleavage.  J Virol . 1995;  69 4127-4136
  • 12 Santolini E, Pacini L, Fipaldini C. The NS2 protein of hepatitis C virus is a transmembrane polypeptide.  J Virol . 1995;  69 7461-7471
  • 13 Pieroni L, Santolini E, Fipaldini C. In vitro study of the NS2-3 protease of hepatitis C virus.  J Virol . 1997;  71 6373-6380
  • 14 De Francesco R, Urbani A, Nardi M C. A zinc binding site in viral serine proteinases.  Biochemistry. 1996;  35 13282-13287
  • 15 Kim J L, Morgenstern K A, Lin C. Crystal structure of the hepatitis virus NS3 proteinase domain complexed with a synthetic NS4A cofactor peptide.  Cell . 1996;  87 343-355
  • 16 Love R A, Parge H E, Wickersham J A. The crystal structure of hepatitis C virus NS3 proteinase reveals a trypsin-like fold and a structural zinc binding site.  Cell . 1996;  87 331-342
  • 17 Yan Y, Li Y, Munshi S. Complex of NS3 protease and NS4A peptide of BK strain hepatitis C virus: A 2.2 Å resolution structure in a hexagonal crystal form.  Protein Sci . 1998;  7 837-847
  • 18 Wu Z, Yao N, Le H V. Mechanism of autoproteolysis at the NS2-NS3 junction of the hepatitis C virus polyprotein.  Trends Biochem Sci . 1998;  23 92-94
  • 19 Gorbalenya A E, Snijder E J. Viral cysteine proteinases.  Perspect Drug Discovery Design . 1996;  6 64-86
  • 20 Urbani A, Bazzo R, Nardi M C. The metal binding site of the hepatitis C virus NS3 protease A spectroscopic study.  J Biol Chem . 1998;  273 18760-18769
  • 21 Failla C, Tomei L, De Francesco R. An amino-terminal domain of the hepatitis C virus NS3 proteinase is essential for interaction with NS4A.  J Virol . 1995;  69 1769-1777
  • 22 Bartenschlager R, Ahlborn Laake L, Mous J. Kinetic and structural analyses of hepatitis C virus polyprotein processing.  J Virol . 1994;  68 5045-5055
  • 23 Tanji Y, Hijikata M, Hirowatari Y. Hepatitis C virus polyprotein processing: Kinetics and mutagenic analysis of serine proteinase-dependent cleavage.  J Virol . 1994;  68 8418-8422
  • 24 Han D S, Hahm B, Rho H M. Identification of the serine protease domain in NS3 of the hepatitis C virus.  J Gen Virol . 1995;  76 985-993
  • 25 Kolykhalov A A, Agapov E V, Rice C M. Specificity of the hepatitis C virus NS3 serine proteinase: Effects of substitutions at the 3/4A, 4A/4B, 4B/5A, and 5A/5B cleavage sites on polyprotein processing.  J Virol . 1994;  68 7525-7533
  • 26 Gallinari P, Paolini C, Brennan D. Modulation of hepatitis C virus NS3 protease and helicase activities through the interaction with NS4A.  Biochemistry . 1999;  38 5620-5632
  • 27 Satoh S, Tanji Y, Hijikata M. The N-terminal region of hepatitis C virus nonstructural protein 3 (NS3) is essential for stable complex formation with NS4A.  J Virol . 1995;  69 4255-4260
  • 28 Koch J O, Lohmann V, Herian U. In vitro studies on the activation of the hepatitis C virus NS3 proteinase by the NS4A cofactor.  Virology . 1996;  221 54-66
  • 29 Tanji Y, Hijikata M, Satoh S. Hepatitis C virus-encoded nonstructural protein NS4A has versatile functions in viral protein processing.  J Virol . 1995;  69 1575-1581
  • 30 Lin C, Rice C M. The hepatitis C virus NS3 proteinase and NS4A co-factor: Establishment of a cell-free trans-processing assay.  Proc Natl Acad Sci USA . 1995;  92 7622-7626
  • 31 Shimizu Y, Yamaji K, Masuho Y. Identification of the sequence of NS4A required for enhanced cleavage of the NS5A/5B site by hepatitis C virus NS3 proteinase.  J Virol . 1996;  70 127-132
  • 32 Tomei L, Failla C, Vitale M R. A central hydrophobic domain of the hepatitis C virus NS4A protein is necessary and sufficient for the activation of the NS3 protease.  J Gen Virol . 1995;  77 1065-1070
  • 33 Barbato G, Cicero D O, Nardi M C. The solution structure of the N-terminal proteinase domain of the hepatitis C virus (HCV) NS3 protein provides new insights into its activation and catalytic mechanism.  J Mol Biol . 1999;  289 371-384
  • 34 Stempniak M, Hostomska Z, Nodes B R. The NS3 proteinase domain of hepatitis C virus is a zinc-containing enzyme.  J Virol . 1997;  71 2881-2886
  • 35 Petersen J FW, Cherney M M, Liebig H-D. The structure of the 2A proteinase from a common cold virus: A proteinase responsible for the shut-off of host-cell protein synthesis.  EMBO J . 1999;  18 5463-5475
  • 36 Schechter I, Berger A. On the size of the active site in proteinases I Papain.  Biochem Biophys Res Commun . 1967;  27 157-162
  • 37 Pizzi E, Tramontano A, Tomei L. Molecular model of the specificity pocket of the hepatitis C virus proteinase: Implications for substrate recognition.  Proc Natl Acad Sci USA . 1994;  91 888-892
  • 38 Urbani A, Bianchi E, Narjes F. Substrate specificity of the hepatitis C virus serine protease NS3.  J Biol Chem . 1997;  272 9204-9209
  • 39 Zhang R, Durkin J, Windsor W T. Probing the substrate specificity of hepatitis C virus NS3 serine protease by using synthetic peptides.  J Virol . 1997;  71 6208-6213
  • 40 Steinkühler C, Urbani A, Tomei L. Activity of purified hepatitis C virus proteinase NS3 on peptide substrates.  J Virol . 1996;  70 6694-6700
  • 41 Steinkühler C, Biasiol G, Brunetti M. Product inhibition of the hepatitis C virus NS3 protease.  Biochemistry . 1998;  37 8899-8905
  • 42 Llinas-Brunet M, Bailey M, Fazal G. Peptide-based inhibitors of the hepatitis C virus serine protease.  Bioorg Med Chem Lett . 1998;  8 1713-1718
  • 43 Llinas-Brunet M, Bailey M, Deziel R. Studies on the C-terminal of hexapeptide inhibitors of the hepatitis C virus serine protease.  Bioorg Med Chem Lett . 1998;  8 2719-2724
  • 44 LaPlante S R, Cameron D R, Aubry N. Solution structure of substrate-based ligands when bound to hepatitis C virus NS3 protease domain.  J Biol Chem . 1999;  274 18618-18624
  • 45 Cicero D O, Barbato G, Koch U. Structural characterization of the interactions of optimized product inhibitors with the N-terminal proteinase domain of the hepatitis C virus (HCV) NS3 protein by NMR and modelling studies.  J Mol Biol . 1999;  289 385-396
  • 46 Yao N, Reichert P, Taremi S S. Molecular views of viral polyprotein processing revealed by the crystal structure of the hepatitis C virus bifunctional protease-helicase.  Structure . 1999;  7 1353-1363
  • 47 Ingallinella P, Altamura S, Bianchi E. Potent peptide inhibitors of human hepatitis C virus NS3 protease are obtained by optimizing the cleavage products.  Biochemistry . 1998;  37 8906-8914
  • 48 Gorbalenya A E, Koonin E V. Helicases: Amino acid sequence comparison and structure-function relationship.  Curr Opin Struct Biol . 1993;  3 419-429
  • 49 Suzich J A, Tamura J K, Palmer Hill F. Hepatitis C virus NS3 protein polynucleotide-stimulated nucleoside triphosphatase and comparison with the related pestivirus and flavivirus enzymes.  J Virol . 1993;  67 6152-6158
  • 50 Gwack Y, Wook D, Han J H. NTPase activity of hepatitis C virus NS3 protein expressed in insect cells.  Mol Cells . 1995;  5 171-175
  • 51 Preugschat F, Averett D R, Clarke B E. A steady-state and pre-steady state kinetic analysis of the NTPase activity associated with the hepatitis C virus NS3 helicase domain.  J Biol Chem . 1996;  271 24449-24457
  • 52 Porter D JT. A kinetic analysis of the oligonucleotide-modulated ATPase activity of the helicase Domain of the NS3 protein from hepatitis C virus.  J Biol Chem . 1998;  273 14247-14253
  • 53 Kim D W, Gwack Y, Han J H. C-terminal domain of the hepatitis C virus NS3 protein contains an RNA helicase activity.  Biochem Biophys Res Commun . 1995;  215 160-166
  • 54 Jin L, Peterson D L. Expression, isolation, and characterization of the hepatitis C virus ATPase/RNA helicase.  Arch Biochem Biophys . 1995;  323 47-53
  • 55 Tai C L, Chi W K, Chen D S. The helicase activity associated with hepatitis C virus nonstructural protein 3 (NS3).  J Virol . 1996;  70 8477-8484
  • 56 Gwack Y, Kim D W, Han J H. Characterization of RNA binding activity and RNA helicase activity of the hepatitis C virus NS3 protein.  Biochem Biophys Res Commun . 1996;  225 654-659
  • 57 Porter D JT, Short S A, Hanlon M H. Product release is the major contributor to kcat for the hepatitis C virus helicase-catalyzed strand separation of short duplex DNA.  J Biol Chem . 1998;  273 18906-18914
  • 58 Kanai A, Tanabe K, Kohara M. Poly(U) binding activity of hepatitis C virus NS3 protein, a putative RNA helicase.  FEBS Lett . 1995;  376 221-224
  • 59 Gallinari P, Brennan D, Nardi C. Multiple enzymatic activities associated with recombinant NS3 protein of hepatitis C virus.  J Virol . 1998;  72 6758-6769
  • 60 Gorbalenya A E, Koonin E V, Donchenko A P. Two related superfamilies of putative helicases involved in replication, recombination, repair and expression of DNA and RNA genomes.  Nucleic Acids Res . 1989;  17 4713-4730
  • 61 Gorbalenya A E, Koonin E V, Wolf Y I. A new family of putative NTP-binding domains encoded by genomes of small DNA and RNA viruses.  FEBS Lett . 1990;  262 145-148
  • 62 Heilek G M, Peterson M G. A point mutation abolishes the helicase but not the nucleoside triphosphatase activity of hepatitis C virus NS3 protein.  J Virol . 1997;  71 6264-6266
  • 63 Kim D W, Kim J, Gwack Y. Mutational analysis of the hepatitis C virus RNA helicase.  J Virol . 1997;  71 9400-9409
  • 64 Wardell A D, Errington W, Ciaramella G. Characterization and mutational analysis of the helicase and NTPase activities of hepatitis C virus full-length NS3 protein.  J Gen Virol . 1999;  80 701-709
  • 65 Yao N, Hesson T, Cable M. Structure of the hepatitis C virus RNA helicase domain.  Nature Struct Biol . 1997;  4 463-467
  • 66 Kim J R, Morgernstern K A, Griffith J P. Hepatitis C virus NS3 RNA helicase domain with a bound oligonucleotide: The crystal structure provides insights into the mode of unwinding.  Structure . 1998;  6 89-100
  • 67 Cho H S, Ha N C, Kang L W. Crystal structure of RNA helicase from genotype 1b hepatitis C virus.  J Biol Chem . 1998;  273 15045-15052
  • 68 Subramanya H S, Bird L E, Brannigan J A. Crystal structure of a DExx box helicase.  Nature . 1996;  384 379-383
  • 69 Korolev S, Yao N, Lohman T M. Comparisons between the structures of HCV and Rep helicases reveal structural similarities between SF1 and SF2 super-families of helicases.  Protein Sci . 1998;  7 605-610
  • 70 Velankar S S, Soultanas P, Dillingham M S. Crystal structures of complexes of PcrA DNA helicase with a DNA substrate indicate an inchworm mechanism.  Cell . 1999;  97 75-84
  • 71 Bird L E, Subramanya H S, Wingley D B. Helicases: A unifying structural theme?.  Curr Opin Struct Biol . 1998;  8 14-18
  • 72 Korolev S, Hsieh J, Gauss G H. Major domain swiveling revealed by the crystal structures of complexes of E coli Rep helicase bound to single-stranded DNA and ADP.  Cell . 1997;  90 635-647
  • 73 Lin C, Kim J L. Structure-based mutagenesis study of hepatitis C virus NS3 helicase.  J Virol . 1999;  73 8798-8807
  • 74 Kaneko T, Tanji Y, Satoh S. Production of two phosphoproteins from the NS5A region of the hepatitis C viral genome.  Biochem Biophys Res Commun . 1994;  205 320-326
  • 75 Tanji Y, Kaneko T, Satoh S. Phosphorylation of hepatitis C virus-encoded nonstructural protein NS5A.  J Virol . 1995;  69 3980-3986
  • 76 Reed K E, Rice C M. Identification of the major phosphorylation site of the hepatitis C virus H strain NS5A proteins as serine 2321.  J Biol Chem . 1999;  274 28011-28018
  • 77 Hirota M, Satoh S, Asabe S I. Phosphorylation of nonstructural 5A protein of hepatitis C virus: HCV group-specific hyperphosphorylation.  Virology . 1999;  257 130-137
  • 78 Liu Q, Bhat R A, Prince A M. The hepatitis C virus NS2 protein generated by NS2-3 autocleavage is required for NS5A phosphorylation.  Biochem Biophys Res Commun . 1999;  254 572-577
  • 79 Koch J O, Bartenschlager R. Modulation of hepatitis C virus NS5A hyperphosphorylation by nonstructural proteins NS3, NS4A, and NS4B.  J Virol . 1999;  73 7138-7146
  • 80 Neddermann P, Clementi A, De Francesco R. Hyperphosphorylation of the hepatitis C virus NS5A protein requires an active NS3 protease, NS4A/B and NS5A encoded on the same polyprotein.  J Virol . 1999;  73 9984-9991
  • 81 Ide Y, Tanimoto A, Sasaguri Y. Hapatitis C virus NS5A protein is phosphorylated in vitro by a stably bound protein kinase from HeLa cells and by cAMP-dependent protein kinase A-αcatalytic subunit.  Gene . 1997;  201 151-158
  • 82 Reed K E, Xu J, Rice C M. Phosphorylation of the hepatitis C virus NS5A protein in vitro and in vivo: Properties of the NS5A-associated kinase.  J Virol . 1997;  71 7181-7197
  • 83 Kim J, Lee D, Choe J. Hepatitis C virus NS5A protein is phorphorylated by casein kinase II.  Biochem Biophys Res Commun . 1999;  257 777-781
  • 84 Kapoor M, Zhang L, Ramachandra M. Association between NS3 and NS5 proteins of Dengue virus type 2 in the putative RNA replicase is linked to differential phosphorylation of NS5.  J Biol Chem . 1995;  270 19100-19106
  • 85 Ide Y, Zhang L, Chen M. Characterization of the nuclear localization signal and subcellular distribution of hepatitis C virus nonstructural protein NS5A.  Gene . 1996;  182 203-211
  • 86 Kato N, Lan K H, Ono-Nita S K. Hepatitis C virus nonstructural region 5A protein is a potent transcriptional activator.  J Virol . 1997;  71 8856-8859
  • 87 Tanimoto A, Ide Y, Arima N. The amino terminal deletion mutants of hepatitis C virus nonstructural protein NS5A function as transcriptional activators in yeast.  Biochem Biophys Res Commun . 1997;  236 360-364
  • 88 Chung K M, Song O K, Jang S K. Hepatitis C virus nonstructural protein 5A contains potential transcriptional activator domains.  Mol Cells . 1997;  7 661-667
  • 89 Fukuma T, Enomoto N, Marumo F. Mutations in the interferon-sensitivity determining region of hepatitis C virus and transcriptional activity of the nonstructural region of 5A protein.  Hepatology . 1998;  28 1147-1153
  • 90 Herion D, Hoofnagle J H. The interferon sensitivity determining region all hepatitis C virus isolates are not the same.  Hepatology . 1997;  25 769-771
  • 91 Enomoto N I, Sakuma Y, Asahina M. Comparison of full-length sequences of interferon-sensitive and restistant hepatitis C virus 1b.  J Clin Invest . 1995;  96 224-230
  • 92 Enomoto N I, Sakuma Y, Asahina M. Mutations in the nonstructural protein 5A gene and response to interferon in patients with chronic hepatitis C virus 1b infection.  N Engl J Med . 1996;  334 77-81
  • 93 Chayama K, Tsubota A, Kobayashi M. Pretreatment virus load and multiple amino acid substitutions in the interferon sensitivity-determining region predict the outcome of interferon treatment in patients with chronic genotype 1b hepatitis C virus infection.  Hepatology . 1997;  25 745-749
  • 94 Komatsu H, Fujisawa T, Inui A. Mutations in the nonstructural protein 5A gene and response to interferon therapy in young patients with chronic hepatitis C virus 1b infection.  J Med Virol . 1997;  3 361-365
  • 95 Murakami T, Enomoto N, Kurosaki M. Mutations in nonstructural protein 5A gene and response to interferon in hepatitis C virus genotype 2 infection.  Hepatology . 1999;  30 1045-1053
  • 96 Murashima S, Ide T, Miyajima I. Mutations in the NS5A gene predict response to interferon therapy in japanese peatients with chronic hepatitis C and cirrhosis.  Scand J Infect Dis . 1999;  31 27-32
  • 97 Sáiz J C, López-Labrador F X, Ampurdanés S. The prognostic relevance of the nonstructural 5A gene interferon sensitivity determining region is different in infections with genotype 1b and 3a isolates of hepatitis C virus.  J Infect Dis . 1998;  177 839-847
  • 98 Magrin S, Gainguzza F, Alaimo G. HCV NS5A mutations in europeans infected by genotype 1b.  Gastroenterology . 1998;  115 244-245
  • 99 Sarrazin C, Berg T, See J H. Improved correlation between multiple mutations within the NS5A region and virological response in European patients chronically infected with hepatitis C virus type 1b undergoing combination therapy.  J Hepatol . 1999;  30 1004-1013
  • 100 Squadrito G, Leone F, Sartori M. Mutations in the nonstructural 5A region of hepatitis C virus and response of chronic hepatitis C to interferon alpha.  Gastroenterology . 1997;  113 567-572
  • 101 Chung R T, Monto A, Dienstag J L. Mutations in the NS5A region do not predict interferon-responsiveness in american patients infected with genotype 1b hepatitis C virus.  J Med Virol . 1999;  58 353-358
  • 102 Ibarrola N, Moreno-Monteagudo J A, Saiz M. Response to retreatment with interferon-alpha plus ribavirin in chronic hepatitis C patients is independent of the NS5A gene nucleotide sequence.  Am J Gastroenterol . 1999;  94 2487-2495
  • 103 Khorsi H, Castelain S, Wyseur A. Mutations of hepatitis C virus 1b NS5A 2209-2248 amino acid sequence do not predict the response to recombinant interferon-alfa therapy in french patients.  J Hepatol . 1997;  27 72-77
  • 104 Squadrito G, Orlando M E, Cacciola I. Long-term response to interferon alpha is unrelated to ``interferon sensitivity determining region'' variability in patients with chronic hepatitis C virus-1b infection.  J Hepatol . 1999;  30 1023-1027
  • 105 Zeuzem S, Lee J H, Roth W K. Mutations in the nonstructural 5A gene of european hepatitis C virus isolates and response to interferon alfa.  Hepatology . 1997;  25 740-744
  • 106 Gale Jr M, Korth M J, Tang N M. Evidence that hepatitis C virus resistance to interferon is mediated through repression of the PKR protein kinase by the nonstructural 5A protein.  Virology . 1997;  230 217-227
  • 107 Gale Jr M, Blakely C N, Kwieciszewski B. Control of PKR protein kinase by hepatitis C virus nonstructural 5A protein: Molecular mechanisms of kinase regulation.  Mol Cell Biol . 1998;  18 5208-5218
  • 108 Gale Jr M, Kwieciszewski B, Dossett M. Antiapoptotic and oncogenic potentials of hepatitis C virus are linked to interferon resistance by viral repression of the PKR protein kinase.  J Virol . 1999;  73 6506-6516
  • 109 Polyak S J, Paschal D M, McArdle S. Characterization of the effects of hepatitis C virus nonstructural 5A protein expression in human cell lines and on interferon-sensitive virus replication.  Hepatology . 1999;  29 1262-1271
  • 110 Song J, Fujii M, Wang F. The NS5A protein of hepatitis C virus partially inhibits the antiviral activity of interferon.  J Gen Virol . 1999;  80 879-886
  • 111 Tan S L, Nakao H, He Y. NS5A, a nonstructural protein of hepatitis C virus, binds growth factor receptor-bound protein 2 adaptor protein in an Src homogy 3 domain/ligand-dependent manner and perturbs mitogenic signaling.  Proc Natl Acad Sci USA . 1999;  96 5533-5538
  • 112 Behrens S E, Tomei L, De Francesco R. Identification and properties of the RNA-dependent RNA polymerase of the hepatitis C virus.  EMBO J . 1996;  15 12-22
  • 113 De Francesco R, Behrens S E, Tomei L. RNA-dependent RNA polymerase of hepatitis C virus.  Methods Enzymol . 1996;  275 58-67
  • 114 Lohman V, Korner F, Herian U. Biochemical properties of the hepatitis C virus RNA-dependent RNA polymerase and identification of the amino acid sequence motifs essential for enzymatic acivity.  J Virol . 1997;  71 8416-8428
  • 115 Yuan Z-H, Kumar U, Thomas H C. Expression, purification, and partial characterization of HCV polymerase.  Biochem Biophys Res Commun . 1997;  232 231-235
  • 116 Al R H, Xie Y, Wang Y, Hagedo C H. Expression of recombinant hepatitis C virus non-structural protein 5B in Escherichia coli Virus Res .  1998;  53 141-149
  • 117 Oh J W, Ito T, Lai M C. A recombinant hepatits C virus RNA-dependent RNA-polymerase capable of copying the full-length viral RNA.  J Virol . 1999;  73 7694-7702
  • 118 Cheng J C, M-F, Chang S C. Specific interaction between the hepatitis C virus NS5B RNA polymerase and the 3′end of the viral RNA.  J Virol . 1999;  73 7044-7049
  • 119 Ishido S, Fujita T, Hotta H. Complex formation of NS5B with NS3 and NS4A proteins of hepatits C virus.  Biochem Biophys Res Commun . 1998;  244 35-40
  • 120 Poch O, Sauvaget I, Delarue M. Identification of four conserved motifs among the RNA dependent polymerase encoding elements.  EMBO J . 1989;  8 3867-3874
  • 121 Yamashita T, Kaneko S, Shirota Y. RNA-dependent RNA polymerase activity of the soluble recombinant hepatitis C virus NS5B protein truncated at the C-terminal region.  J Biol Chem . 1998;  73 15479-15486
  • 122 Ishii K, Tanaka Y, Yap C C. Expression of hepatits C virus NS5B protein: Characterization of its RNA polymerase activity and RNA binding.  Hepatology . 1999;  29 1227:1235
  • 123 Lesburg C A, Cable M C, Ferrari E. Crystal structure of the RNA-dependent RNA polymerase of hepatitis C virus reveals a fully encircled active site.  Nature Struct Biol . 1999;  6 937-943
  • 124 Bressanelli S, Tomei L, Roussel A. Crystal structure of the RNA-dependent RNA polymerase of hepatitis C virus.  Proc Natl Acad Sci USA . 1999;  96 13034-13039
  • 125 Ago H, Adachi T, Yoshida A. Crystal structure of the RNA-dependent RNA polymerase of hepatitis C virus.  Structure . 1999;  7 1417-1426
  • 126 Conti E, Uy M, Leighton L. Crystallographic analysis of the recognition of a nuclear localization signal by the nuclear import factor karyopherin alpha.  Cell . 1999;  94 193-204
  • 127 Ferrari E, Wright-Minogue J, Fang J WS. Characterization of soluble hepatitis C virus RNA-dependent RNA polymerase expressed in E coli .  J Virol. 1999;  73 1649-1654
  • 128 Di Bisceglie M A. Hepatitis C.  Lancet . 1998;  351 3511-355
  • 129 Alberti A. Therapy of hepatitis C: Re-treatment with alpha interferon.  Hepathology . 1997;  26(Suppl 1) 137-142
  • 130 Bancherau J, Rousset F. Human B lymphocytes: Phenotype, proliferation and differentiation.  Adv Immunol . 1992;  52 125-262
  • 131 Berke G. The binding and lysis of target cells by cytotoxic lymphocytes: Molecular and cellular aspects.  Annu Rev Immunol . 1994;  12 735-773
  • 132 Berke G. The CTL's kiss of death.  Cell . 1995;  81 9-12
  • 133 Guidotti L G, Guilhot S, Chisari F V. Interleukin 2 and interferon alpha/beta downregulate hepatitis B virus gene expression in vivo by tumor necrosis factor dependent and independent pathways.  J Virol . 1994;  68 1265-1270
  • 134 Hoffmann R M, Diepolder H M, Zachoval R. Mapping of immunodominant CD4 T lymphocytes epitopes of hepatitis C virus antigens and their relevance during the course of chronic infection.  Hepatology . 1995;  21 632-638
  • 135 Missale G, Bertoni R, Lamonaca V. different clinical behaviours of acute hepatitis C virus infection are associated with different vigour of the anti-viral cell-mediated immune response.  J Clin Invest . 1996;  98 706-714
  • 136 Diepolder H M, Gerlach J T, Zachoval R. Immunodominant CD4+ T-cell epitope within nonstructural protein 3 in acute hepatits C virus infection.  J Virol . 1997;  71 6011-6019
  • 137 Diepolder H M, Zachoval R, Hoffmann R M. The role of hepatitis C virus specific CD4+ T-lymphocytes in acute and chronic hepatitis C.  J Mol Med . 1996;  74 583-588
  • 138 Diepolder H M, Zachoval R, Hoffmann R M. Possible mechanism involving T lymphocyte response to nonstructural protein 3 in viral clearance in acute hepatits C virus infection.  Lancet . 1995;  346 1006-1007
  • 139 Romagnani S. Lymphokine production by human T cells in disease states.  Annu Rev Immunol . 1994;  12 227-257
  • 140 Tsai S-L, Liaw Y-F, Chen M-H. Detection of type 2-like T-helper cells in hepatitis C virus infection: Implications for hepatitis C chronicity.  Hepatology . 1997;  25 449-458
  • 141 Koziel M J, Wong D KH, Dudley D. Hepatitis C virus-specific cytolitic T lymphocytes and T helper cell responses in seronegative persons.  J Infect Dis . 1997;  176 859-866
  • 142 Scognamiglio P, Accapezzato D, Casciaro M A. Presence of effector CD8+ T cells in hepatitis C virus-exposed healthy seronegative donors.  J Immunol . 1999;  162 6681-6689
  • 143 Rehermann B. Cellular immune response to the hepatitis C virus.  J Viral Hepat . 1999;  6(Suppl 1) 31-35
  • 144 Rehermann B, Chang K M, McHutchinson J. Differential cytotoxic T-lymphocyte responsiveness to the hepatitis B and C viruses in chronically infected patients.  J Virol . 1996;  70 7092-7102
  • 145 Hiroishi K, Kita H, Kojima M. Cytotoxic T lymphocytes response and viral load in hepatitis C virus infection.  Hepatology . 1997;  25 705-712
  • 146 Nelson D R, Marousis C G, Davis G L. The role of hepatitis C virus-specific cytotoxic T lymphocytes in chronic hepatitis C.  J Immunol . 1997;  158 1473-1481
  • 147 Weiner A J, Erickson A L, Kansopon J. Persistent hepatitis C virus infection in a chimpanzee is associated with emergence of a cytotoxic T lymphocyte escape variant.  Proc Natl Acad Sci USA . 1995;  92 2755-2759
  • 148 Cooper S, Erickson A L, Adams E J. Analysis of a successful immune response against hepatitis C virus.  Immunity . 1999;  10 439-449
  • 149 Zibert A, Meisel H, Kraas W. Early antibody response against hypervariable region 1 is associated with acute self-limiting infections of hepatitis C virus.  Hepatology . 1997;  25 1245-1249
  • 150 Ishii K, Rosa D, Watanabe Y. High titers of antibodies inhibiting the binding of envelope to human cells correlate with natural resolution of chronic hepatitis C.  Hepatology . 1998;  28 1117-1120
    >