Semin intervent Radiol 2024; 41(02): 113-120
DOI: 10.1055/s-0044-1786724
Review Article

Innovations in Image-Guided Procedures: Unraveling Robot-Assisted Non-Hepatic Percutaneous Ablation

David-Dimitris Chlorogiannis
1   Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
,
Georgios Charalampopoulos
2   2nd Department of Radiology, University General Hospital “ATTIKON,” Medical School, National and Kapodistrian University of Athens, Athens, Greece
,
Reto Bale
3   Department of Radiology, Interventional Oncology - Stereotaxy and Robotics, Medical University Innsbruck, Innsbruck, Austria
,
Bruno Odisio
4   Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
,
Bradford J. Wood
5   Interventional Radiology and Center for Interventional Oncology, NIH Clinical Center and National Cancer Institute, National Institutes of Health, Bethesda, Maryland
,
Dimitrios K. Filippiadis
2   2nd Department of Radiology, University General Hospital “ATTIKON,” Medical School, National and Kapodistrian University of Athens, Athens, Greece
› Author Affiliations

Abstract

Interventional oncology is routinely tasked with the feat of tumor characterization or destruction, via image-guided biopsy and tumor ablation, which may pose difficulties due to challenging-to-reach structures, target complexity, and proximity to critical structures. Such procedures carry a risk-to-benefit ratio along with measurable radiation exposure. To streamline the complexity and inherent variability of these interventions, various systems, including table-, floor-, gantry-, and patient-mounted (semi-) automatic robotic aiming devices, have been developed to decrease human error and interoperator and intraoperator outcome variability. Their implementation in clinical practice holds promise for enhancing lesion targeting, increasing accuracy and technical success rates, reducing procedure duration and radiation exposure, enhancing standardization of the field, and ultimately improving patient outcomes. This narrative review collates evidence regarding robotic tools and their implementation in interventional oncology, focusing on clinical efficacy and safety for nonhepatic malignancies.



Publication History

Article published online:
10 July 2024

© 2024. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Park R, Lee SM, Kim S. et al. Learning curve for CT-guided percutaneous transthoracic needle biopsy: retrospective evaluation among 17 thoracic imaging fellows at a tertiary referral hospital. AJR Am J Roentgenol 2022; 218 (01) 112-123
  • 2 Nakatani M, Kariya S, Ono Y. et al. Radiation exposure and protection in computed tomography fluoroscopy. Interv Radiol (Higashimatsuyama) 2022; 7 (02) 49-53
  • 3 Matsui Y, Hiraki T, Gobara H. et al. Radiation exposure of interventional radiologists during computed tomography fluoroscopy-guided renal cryoablation and lung radiofrequency ablation: direct measurement in a clinical setting. Cardiovasc Intervent Radiol 2016; 39 (06) 894-901
  • 4 Charalampopoulos G, Bale R, Filippiadis D, Odisio BC, Wood B, Solbiati L. Navigation and robotics in interventional oncology: current status and future roadmap. Diagnostics (Basel) 2023; 14 (01) 98
  • 5 Mühlhofer HML, Lenze U, Lenze F. et al. Inter- and intra-observer variability in biopsy of bone and soft tissue sarcomas. Anticancer Res 2015; 35 (02) 961-966
  • 6 Stoffner R, Augschöll C, Widmann G, Böhler D, Bale R. Accuracy and feasibility of frameless stereotactic and robot-assisted CT-based puncture in interventional radiology: a comparative phantom study. RöFo - Fortschritte auf dem Gebiet der Röntgenstrahlen und der bildgebenden Verfahren 2009; 181 (09) 851-858
  • 7 Amalou H, Wood BJ. Electromagnetic tracking navigation to guide radiofrequency ablation of a lung tumor. J Bronchology Interv Pulmonol 2012; 19 (04) 323-327
  • 8 Widmann G, Schullian P, Fasser M, Niederwanger C, Bale R. CT-guided stereotactic targeting accuracy of osteoid osteoma. Int J Med Robot 2013; 9 (03) 274-279
  • 9 Bale RJ, Hoser C, Rosenberger R, Rieger M, Benedetto KP, Fink C. Osteochondral lesions of the talus: computer-assisted retrograde drilling–feasibility and accuracy in initial experiences. Radiology 2001; 218 (01) 278-282
  • 10 Bale RJ, Kovacs P, Dolati B, Hinterleithner C, Rosenberger RE. Stereotactic CT-guided percutaneous stabilization of posterior pelvic ring fractures: a preclinical cadaver study. J Vasc Interv Radiol 2008; 19 (07) 1093-1098
  • 11 Lanza C, Carriero S, Buijs EFM. et al. Robotics in interventional radiology: review of current and future applications. Technol Cancer Res Treat 2023; 22: 15 330338231152084
  • 12 Niederwanger C, Widmann G, Knoflach M, Schullian P, Hoermann R, Bale R. Kirschner wire placement in scaphoid bones using intraoperative CT-guided stereotaxy. Minim Invasive Ther Allied Technol 2013; 22 (03) 165-170
  • 13 Bale RJ, Freysinger W, Gunkel AR. et al. Head and neck tumors: fractionated frameless stereotactic interstitial brachytherapy-initial experience. Radiology 2000; 214 (02) 591-595
  • 14 Venkatesan AM, Kadoury S, Abi-Jaoudeh N. et al. Real-time FDG PET guidance during biopsies and radiofrequency ablation using multimodality fusion with electromagnetic navigation. Radiology 2011; 260 (03) 848-856
  • 15 Christou AS, Amalou A, Lee H. et al. Image-guided robotics for standardized and automated biopsy and ablation. Semin Intervent Radiol 2021; 38 (05) 565-575
  • 16 Grigoriadis S, Filippiadis D, Stamatopoulou V, Alexopoulou E, Kelekis N, Kelekis A. Navigation guidance for percutaneous splanchnic nerve radiofrequency neurolysis: preliminary results. Medicina (Kaunas) 2022; 58 (10) 1359
  • 17 Grunert Sr P, Keiner D, Oertel J. Remarks upon the term stereotaxy: a linguistic and historical note. Stereotact Funct Neurosurg 2015; 93 (01) 42-49
  • 18 Ortler M, Unterhofer C, Bauer R, Dobesberger J, Trinka E, Bale R. Flexibility of head positioning and head fixation provided by a novel system for non-invasive maxillary fixation and frameless stereotaxy: technical note. Minim Invasive Neurosurg 2009; 52 (03) 144-148
  • 19 Widmann G, Schullian P, Haidu M, Wiedermann FJ, Bale R. Respiratory motion control for stereotactic and robotic liver interventions. Int J Med Robot 2010; 6 (03) 343-349
  • 20 Engstrand J, Toporek G, Harbut P, Jonas E, Nilsson H, Freedman J. Stereotactic CT-guided percutaneous microwave ablation of liver tumors with the use of high-frequency jet ventilation: an accuracy and procedural safety study. AJR Am J Roentgenol 2017; 208 (01) 193-200
  • 21 Solomon SB, Patriciu A, Bohlman ME, Kavoussi LR, Stoianovici D. Robotically driven interventions: a method of using CT fluoroscopy without radiation exposure to the physician. Radiology 2002; 225 (01) 277-282
  • 22 Mahmud E, Schmid F, Kalmar P. et al. Feasibility and safety of robotic peripheral vascular interventions: results of the RAPID trial. JACC Cardiovasc Interv 2016; 9 (19) 2058-2064
  • 23 Cleary K, Melzer A, Watson V, Kronreif G, Stoianovici D. Interventional robotic systems: applications and technology state-of-the-art. Minim Invasive Ther Allied Technol 2006; 15 (02) 101-113
  • 24 Stoianovici D, Kim C, Petrisor D. et al. MR safe robot, FDA clearance, safety and feasibility prostate biopsy clinical trial. IEEE/ASME Trans Mechatron 2017; 22 (01) 115-126
  • 25 Schaible J, Lürken L, Wiggermann P. et al. Primary efficacy of percutaneous microwave ablation of malignant liver tumors: comparison of stereotactic and conventional manual guidance. Sci Rep 2020; 10 (01) 18835
  • 26 Levy S, Goldberg SN, Roth I. et al. Clinical evaluation of a robotic system for precise CT-guided percutaneous procedures. Abdom Radiol (NY) 2021; 46 (10) 5007-5016
  • 27 Chehab MA, Brinjikji W, Copelan A, Venkatesan AM. Navigational tools for interventional radiology and interventional oncology applications. Semin Intervent Radiol 2015; 32 (04) 416-427
  • 28 Kettenbach J, Kara L, Toporek G, Fuerst M, Kronreif G. A robotic needle-positioning and guidance system for CT-guided puncture: ex vivo results. Minim Invasive Ther Allied Technol 2014; 23 (05) 271-278
  • 29 Schulz B, Eichler K, Siebenhandl P. et al. Accuracy and speed of robotic assisted needle interventions using a modern cone beam computed tomography intervention suite: a phantom study. Eur Radiol 2013; 23 (01) 198-204
  • 30 Kettenbach J, Kronreif G. Robotic systems for percutaneous needle-guided interventions. Minim Invasive Ther Allied Technol 2015; 24 (01) 45-53
  • 31 Kettenbach J, Kronreif G, Figl M. et al. Robot-assisted biopsy using ultrasound guidance: initial results from in vitro tests. Eur Radiol 2005; 15 (04) 765-771
  • 32 Kettenbach J, Kronreif G, Figl M. et al. Robot-assisted biopsy using computed tomography-guidance: initial results from in vitro tests. Invest Radiol 2005; 40 (04) 219-228
  • 33 Martinez RM, Ptacek W, Schweitzer W. et al. CT-guided, minimally invasive, postmortem needle biopsy using the B-Rob II needle-positioning robot. J Forensic Sci 2014; 59 (02) 517-521
  • 34 Scharll Y, Böhler D, Laimer G, Schullian P, Bale R. Laser target system in combination with an aiming device for percutaneous CT-guided interventions - an accuracy study. Acad Radiol 2023; 30 (12) 3047-3055
  • 35 Cleary K, Watson V, Lindisch D. et al. Precision placement of instruments for minimally invasive procedures using a “needle driver” robot. Int J Med Robot 2005; 1 (02) 40-47
  • 36 Groetz S, Wilhelm K, Willinek W, Pieper C, Schild H, Thomas D. A new robotic assistance system for percutaneous CT-guided punctures: initial experience. Minim Invasive Ther Allied Technol 2016; 25 (02) 79-85
  • 37 Case Reports MICROMATETM. . Accessed January 2024 at: https://interventional-systems.showpad.com/share/8nPSChuvOvnUwLsqh10dB .
  • 38 Sandahl M, Sandahl KJ, Marinovskij E. et al. Prostate cancer detection rate of manually operated and robot-assisted in-bore magnetic resonance imaging targeted biopsy. Eur Urol Open Sci 2022; 41: 88-94
  • 39 Li G, Patel NA, Melzer A, Sharma K, Iordachita I, Cleary K. MRI-guided lumbar spinal injections with body-mounted robotic system: cadaver studies. Minim Invasive Ther Allied Technol 2022; 31 (02) 297-305
  • 40 Ranjan H, Van Hilten M, Groenhuis V. et al. Sunram 7: An MR safe robotic system for breast biopsy. In: 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE; 2023 :10281–8
  • 41 Moreira P, Grimble J, Bernardes MC. et al. Motorized template for MRI-guided focal cryoablation of prostate cancer. IEEE Trans Med Robot Bionics 2023; 5 (02) 335-342
  • 42 Koethe Y, Xu S, Velusamy G, Wood BJ, Venkatesan AM. Accuracy and efficacy of percutaneous biopsy and ablation using robotic assistance under computed tomography guidance: a phantom study. Eur Radiol 2014; 24 (03) 723-730
  • 43 Hiraki T, Kamegawa T, Matsuno T. et al. Robotically driven CT-guided needle insertion: preliminary results in phantom and animal experiments. Radiology 2017; 285 (02) 454-461
  • 44 Scharll Y, Letrari S, Laimer G, Schullian P, Bale R. Puncture accuracy of an optical tracked robotic aiming device-a phantom study. Eur Radiol 2022; 32 (10) 6769-6776
  • 45 Hiraki T, Matsuno T, Kamegawa T. et al. Robotic insertion of various ablation needles under computed tomography guidance: accuracy in animal experiments. Eur J Radiol 2018; 105: 162-167
  • 46 de Baere T, Roux C, Noel G. et al. Robotic assistance for percutaneous needle insertion in the kidney: preclinical proof on a swine animal model. Eur Radiol Exp 2022; 6 (01) 13
  • 47 Hiraki T, Kamegawa T, Matsuno T. et al. Robotic needle insertion during computed tomography fluoroscopy-guided biopsy: prospective first-in-human feasibility trial. Eur Radiol 2020; 30 (02) 927-933
  • 48 Johnston EW, Basso J, Silva F. et al. Robotic versus freehand CT-guided radiofrequency ablation of pulmonary metastases: a comparative cohort study. Int J CARS 2023; 18 (10) 1819-1828
  • 49 Smakic A, Rathmann N, Kostrzewa M, Schönberg SO, Weiß C, Diehl SJ. Performance of a robotic assistance device in computed tomography-guided percutaneous diagnostic and therapeutic procedures. Cardiovasc Intervent Radiol 2018; 41 (04) 639-644
  • 50 Ben-David E, Shochat M, Roth I, Nissenbaum I, Sosna J, Goldberg SN. Evaluation of a CT-guided robotic system for precise percutaneous needle insertion. J Vasc Interv Radiol 2018; 29 (10) 1440-1446
  • 51 Scharll Y, Mitteregger A, Laimer G, Schwabl C, Schullian P, Bale R. Comparison of a robotic and patient-mounted device for CT-guided needle placement: a phantom study. J Clin Med 2022; 11 (13) 3746
  • 52 Cornelis F, Takaki H, Laskhmanan M. et al. Comparison of CT fluoroscopy-guided manual and CT-guided robotic positioning system for in vivo needle placements in swine liver. Cardiovasc Intervent Radiol 2015; 38 (05) 1252-1260
  • 53 CIRSE 2023 Book of Abstracts. Cardiovasc Intervent Radiol 2023; 46 ( S (Suppl. 04) 431-1733
  • 54 Liu Q, Guo X, Wang Z. et al. Computed tomography-guided percutaneous lung biopsy with electromagnetic navigation compared with conventional approaches: an open-label, randomized controlled trial. J Thorac Imaging 2023. Doi: 10.1097/RTI.0000000000000763. Epub ahead of print. PMID: 37982518
  • 55 Teriitehau C, Rabeh H, Pessis E, Sénéchal Q, Besse F, Bravetti M. Reduction of patient radiation dose during percutaneous CT vertebroplasty: impact of a new computer-assisted navigation (CAN) system. Radioprotection 2020; 55 (01) 11-16
  • 56 Boeken T, Pouliquen G, Premat K. et al. Initial experience, feasibility, and technical development with an electromagnetic navigation assistance in percutaneous pelvic bone cementoplasty: retrospective analysis. Eur Radiol 2023; 33 (04) 2605-2611
  • 57 Witkowska A, Levy S, Roth I. et al. Feasibility and accuracy of a novel hands-free robotic system for percutaneous needle insertion and steering. Surg Technol Int 2022; 41: 41
  • 58 Witkowska A, Petre EN, Moussa AM. et al. Feasibility and safety of percutaneous CT-guided bone biopsies in patients with cancer using a patient-mounted robotic system: a retrospective analysis of 40 consecutive biopsies. J Vasc Interv Radiol 2023; 34 (12) 2174-2179
  • 59 Yanof J, Haaga J, Klahr P. et al. CT-integrated robot for interventional procedures: preliminary experiment and computer-human interfaces. Comput Aided Surg 2001; 6 (06) 352-359
  • 60 Arnolli MM, Hanumara NC, Franken M, Brouwer DM, Broeders IAMJ. An overview of systems for CT- and MRI-guided percutaneous needle placement in the thorax and abdomen. Int J Med Robot 2015; 11 (04) 458-475