Semin Reprod Med 2023; 41(05): 190-199
DOI: 10.1055/s-0043-1778056
Review Article

The Upper Reproductive System Microbiome: Evidence beyond the Uterus

Analuce Canha-Gouveia*
1   Department of Physiology, Faculty of Veterinary, University of Murcia, Murcia, Spain
2   Biomedical Research Institute of Murcia (IMIB-Arrixaca), University Clinical Hospital “Virgen de la Arrixaca,” Murcia, Spain
3   Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Spain
4   Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
,
Valentina Di Nisio*
5   Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Huddinge, Stockholm, Sweden
6   Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Huddinge, Stockholm, Sweden
,
Andres Salumets
5   Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Huddinge, Stockholm, Sweden
6   Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Huddinge, Stockholm, Sweden
7   Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
8   Competence Centre on Health Technologies, Tartu, Estonia
,
Pauliina Damdimopoulou
5   Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Huddinge, Stockholm, Sweden
6   Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Huddinge, Stockholm, Sweden
,
Pilar Coy
1   Department of Physiology, Faculty of Veterinary, University of Murcia, Murcia, Spain
2   Biomedical Research Institute of Murcia (IMIB-Arrixaca), University Clinical Hospital “Virgen de la Arrixaca,” Murcia, Spain
,
Signe Altmäe
3   Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Spain
4   Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
5   Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Huddinge, Stockholm, Sweden
6   Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Huddinge, Stockholm, Sweden
,
Alberto Sola-Leyva
4   Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
5   Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Huddinge, Stockholm, Sweden
6   Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Huddinge, Stockholm, Sweden
8   Competence Centre on Health Technologies, Tartu, Estonia
› Author Affiliations
Funding This study was funded by the Spanish Ministry of Economy, Industry and Competitiveness (MINECO) and the European Regional Development Fund (FEDER) through MCIN/AEI/10.13039/501100011033 and ERFD's “A way of making Europe projects”, specifically Endo-Map PID2021-12728OB-100 and ROSY CNS2022-135999. A.C.G.'s funding was provided by the “Plan de Recuperación, Transformación y Resiliencia”, specifically under the “Ayudas para la recualificación del sistema universitario español” and “Ayudas Margarita Salas para la formación de jóvenes doctores” at Universidad de Murcia. A.S.L. received funding from the Becas Fundación Ramón Areces para Estudios Postdoctorales, within the XXXV Convocatoria para Ampliación de Estudios en el Extranjero en Ciencias de la Vida y de la Materia. Additionally, this work was supported by the European Union's Horizon 2020 research and innovation program “ERIN” (grant ID EU952516).

Abstract

The microbiome of the female upper reproductive system has garnered increasing recognition and has become an area of interest in the study of women's health. This intricate ecosystem encompasses a diverse consortium of microorganisms (i.e., microbiota) and their genomes (i.e., microbiome) residing in the female upper reproductive system, including the uterus, the fallopian tubes, and ovaries. In recent years, remarkable advancements have been witnessed in sequencing technologies and microbiome research, indicating the potential importance of the microbial composition within these anatomical sites and its impact in women's reproductive health and overall well-being. Understanding the composition, dynamics, and functions of the microbiome of the female upper reproductive system opens up exciting avenues for improving fertility, treating gynecological conditions, and advancing our comprehension of the intricate interplay between the microbiome and the female reproductive system. The aim of this study is to compile currently available information on the microbial composition of the female upper reproductive system in humans, with a focus beyond the uterus, which has received more attention in recent microbiome studies compared with the fallopian tubes and ovaries. In conclusion, this review underscores the potential role of this microbiome in women's physiology, both in health and disease.

* These authors contributed equally.




Publication History

Article published online:
06 February 2024

© 2024. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Rosner J, Samardzic T, Sarao MS. Physiology, Female Reproduction. StatPearls; 2022. Accessed November 4, 2023 at: https://www.ncbi.nlm.nih.gov/books/NBK537132/
  • 2 Power ML, Quaglieri C, Schulkin J. Reproductive microbiomes: a new thread in the microbial network. Reprod Sci 2017; 24 (11) 1482-1492
  • 3 Sender R, Fuchs S, Milo R. Are we really vastly outnumbered? Revisiting the ratio of bacterial to host cells in humans. Cell 2016; 164 (03) 337-340
  • 4 Perez-Muñoz ME, Arrieta MC, Ramer-Tait AE, Walter J. A critical assessment of the “sterile womb” and “in utero colonization” hypotheses: implications for research on the pioneer infant microbiome. Microbiome 2017; 5 (01) 48
  • 5 Molina NM, Sola-Leyva A, Haahr T. et al. Analysing endometrial microbiome: methodological considerations and recommendations for good practice. Hum Reprod 2021; 36 (04) 859-879
  • 6 Molina NM, Sola-Leyva A, Saez-Lara MJ. et al. New opportunities for endometrial health by modifying uterine microbial composition: present or future?. Biomolecules 2020; 10 (04) 593
  • 7 Altmäe S, Franasiak JM, Mändar R. The seminal microbiome in health and disease. Nat Rev Urol 2019; 16 (12) 703-721
  • 8 Mirzayi C, Renson A, Zohra F. et al; Genomic Standards Consortium, Massive Analysis and Quality Control Society. Reporting guidelines for human microbiome research: the STORMS checklist. Nat Med 2021; 27 (11) 1885-1892
  • 9 Shakya M, Lo CC, Chain PSG. Advances and challenges in metatranscriptomic analysis. Front Genet 2019; 10: 904
  • 10 Knight R, Vrbanac A, Taylor BC. et al. Best practices for analysing microbiomes. Nat Rev Microbiol 2018; 16 (07) 410-422
  • 11 Lagier JC, Dubourg G, Million M. et al. Culturing the human microbiota and culturomics. Nat Rev Microbiol 2018; 16 (09) 540-550
  • 12 Chen C, Song X, Wei W. et al. The microbiota continuum along the female reproductive tract and its relation to uterine-related diseases. Nat Commun 2017; 8 (01) 875
  • 13 Ma B, Forney LJ, Ravel J. Vaginal microbiome: rethinking health and disease. Ann Rev Microbiol 2012; 66: 371-389
  • 14 Kalia N, Singh J, Kaur M. Microbiota in vaginal health and pathogenesis of recurrent vulvovaginal infections: a critical review. Ann Clin Microbiol Antimicrob 2020; 19 (01) 5
  • 15 Deka N, Hassan S, Seghal Kiran G, Selvin J. Insights into the role of vaginal microbiome in women's health. J Basic Microbiol 2021; 61 (12) 1071-1084
  • 16 Lev-Sagie A, Goldman-Wohl D, Cohen Y. et al. Vaginal microbiome transplantation in women with intractable bacterial vaginosis. Nat Med 2019; 25 (10) 1500-1504
  • 17 Koedooder R, Mackens S, Budding A. et al. Identification and evaluation of the microbiome in the female and male reproductive tracts. Hum Reprod Update 2019; 25 (03) 298-325
  • 18 Moreno I, Codoñer FM, Vilella F. et al. Evidence that the endometrial microbiota has an effect on implantation success or failure. Am J Obstet Gynecol 2016; 215 (06) 684-703
  • 19 Lüll K, Saare M, Peters M. et al. Differences in microbial profile of endometrial fluid and tissue samples in women with in vitro fertilization failure are driven by Lactobacillus abundance. Acta Obstet Gynecol Scand 2022; 101 (02) 212-220
  • 20 Sola-Leyva A, Andrés-León E, Molina NM. et al. Mapping the entire functionally active endometrial microbiota. Hum Reprod 2021; 36 (04) 1021-1031
  • 21 Toson B, Simon C, Moreno I. The endometrial microbiome and its impact on human conception. Int J Mol Sci 2022; 23 (01) 485
  • 22 Kadogami D, Nakaoka Y, Morimoto Y. Use of a vaginal probiotic suppository and antibiotics to influence the composition of the endometrial microbiota. Reprod Biol 2020; 20 (03) 307-314
  • 23 Franasiak JM, Scott Jr RT. Reproductive tract microbiome in assisted reproductive technologies. Fertil Steril 2015; 104 (06) 1364-1371
  • 24 Moreno I, Franasiak JM. Endometrial microbiota-new player in town. Fertil Steril 2017; 108 (01) 32-39
  • 25 Amso NN, Crow J, Lewin J, Shaw RW. A comparative morphological and ultrastructural study of endometrial gland and fallopian tube epithelia at different stages of the menstrual cycle and the menopause. Hum Reprod 1994; 9 (12) 2234-2241
  • 26 Han J, Sadiq NM. Anatomy, Abdomen and Pelvis: Fallopian Tube. StatPearls Publishing; 2023. Accessed November 4, 2023 at: https://www.ncbi.nlm.nih.gov/books/NBK547660/
  • 27 Crow J, Amso NN, Lewin J, Shaw RW. Morphology and ultrastructure of fallopian tube epithelium at different stages of the menstrual cycle and menopause. Hum Reprod 1994; 9 (12) 2224-2233
  • 28 Ezzati M, Djahanbakhch O, Arian S, Carr BR. Tubal transport of gametes and embryos: a review of physiology and pathophysiology. J Assist Reprod Genet 2014; 31 (10) 1337-1347
  • 29 Lyons RA, Saridogan E, Djahanbakhch O. The reproductive significance of human fallopian tube cilia. Hum Reprod Update 2006; 12 (04) 363-372
  • 30 Dixon RE, Hwang SJ, Hennig GW. et al. Chlamydia infection causes loss of pacemaker cells and inhibits oocyte transport in the mouse oviduct. Biol Reprod 2009; 80 (04) 665-673
  • 31 Lyons RA, Djahanbakhch O, Mahmood T. et al. Fallopian tube ciliary beat frequency in relation to the stage of menstrual cycle and anatomical site. Hum Reprod 2002; 17 (03) 584-588
  • 32 Eddy CA, Pauerstein CJ. Anatomy and physiology of the fallopian tube. Clin Obstet Gynecol 1980; 23 (04) 1177-1193
  • 33 Walls M, Junk S, Ryan JP, Hart R. IVF versus ICSI for the fertilization of in-vitro matured human oocytes. Reprod Biomed Online 2012; 25 (06) 603-607
  • 34 Avilés M, Gutiérrez-Adán A, Coy P. Oviductal secretions: will they be key factors for the future ARTs?. Mol Hum Reprod 2010; 16 (12) 896-906
  • 35 Coy P, Yanagimachi R. The common and species-specific roles of oviductal proteins in mammalian fertilization and embryo development. Bioscience 2015; 65 (10) 973-984
  • 36 Pelzer ES, Willner D, Buttini M, Hafner LM, Theodoropoulos C, Huygens F. The fallopian tube microbiome: implications for reproductive health. Oncotarget 2018; 9 (30) 21541-21551
  • 37 Pelzer ES, Willner D, Huygens F, Hafner LM, Lourie R, Buttini M. Fallopian tube microbiota: evidence beyond DNA. Future Microbiol 2018; 13 (12) 1355-1361
  • 38 Ng KYB, Mingels R, Morgan H, Macklon N, Cheong Y. In vivo oxygen, temperature and pH dynamics in the female reproductive tract and their importance in human conception: a systematic review. Hum Reprod Update 2018; 24 (01) 15-34
  • 39 Leese HJ. The formation and function of oviduct fluid. J Reprod Fertil 1988; 82 (02) 843-856
  • 40 Li S, Winuthayanon W. Oviduct: roles in fertilization and early embryo development. J Endocrinol 2017; 232 (01) R1-R26
  • 41 Miles SM, Hardy BL, Merrell DS. Investigation of the microbiota of the reproductive tract in women undergoing a total hysterectomy and bilateral salpingo-oopherectomy. Fertil Steril 2017; 107 (03) 813-820.e1
  • 42 Bo Y, Congzhou L, Sean P. et al. Identification of fallopian tube microbiota and its association with ovarian cancer: a prospective study of intraoperative swab collections from 187 patients. eLife 2023; 12: RP89830 https://doi.org/10.7554/eLife.89830.1
  • 43 Strandell A, Lindhard A. Why does hydrosalpinx reduce fertility? The importance of hydrosalpinx fluid. Hum Reprod 2002; 17 (05) 1141
  • 44 Ng EH, Ajonuma LC, Lau EY, Yeung WS, Ho PC. Adverse effects of hydrosalpinx fluid on sperm motility and survival. Hum Reprod 2000; 15 (04) 772-777
  • 45 Meyer WR, Castelbaum AJ, Somkuti S. et al. Hydrosalpinges adversely affect markers of endometrial receptivity. Hum Reprod 1997; 12 (07) 1393-1398
  • 46 Canha-Gouveia A, Pérez-Prieto I, Rodríguez CM. et al. The female upper reproductive tract harbors endogenous microbial profiles. Front Endocrinol (Lausanne) 2023; 14: 1096050
  • 47 Williams CJ, Erickson GF. Morphology and Physiology of the Ovary. Endotext; 2012. Accessed November 4, 2023 at: https://www.ncbi.nlm.nih.gov/books/NBK278951/
  • 48 Verhoeven MO, Lambalk CB. Ovarian physiology. In: Endocrinology. Cham: Springer; 2016: 1-22
  • 49 Sokkary N, Dietrich JE. Ovarian embryology, anatomy, and physiology including normal menstrual physiology. In: Endocrine Surgery in Children. Berlin: Springer; 2018: 319-326
  • 50 Shrestha K, Rodler D, Sinowatz F, Meidan R. Corpus luteum formation. In: The Ovary. London: Academic Press; 2019: 255-267
  • 51 Magoffin D, Kumar A, Yildiz B, Azziz R. Endocrinology of the ovary. In: Melmed S, Conn PM. eds. Endocrinology Basic Clinical Principles. Totowa, NJ: Humana Press; 2005: 391-403
  • 52 Shanmughapriya S, Senthilkumar G, Vinodhini K, Das BC, Vasanthi N, Natarajaseenivasan K. Viral and bacterial aetiologies of epithelial ovarian cancer. Eur J Clin Microbiol Infect Dis 2012; 31 (09) 2311-2317
  • 53 Chan PJ, Seraj IM, Kalugdan TH, King A. Prevalence of mycoplasma conserved DNA in malignant ovarian cancer detected using sensitive PCR-ELISA. Gynecol Oncol 1996; 63 (02) 258-260
  • 54 Asangba AE, Chen J, Goergen KM. et al. Diagnostic and prognostic potential of the microbiome in ovarian cancer treatment response. Sci Rep 2023; 13 (01) 730
  • 55 Zhao L, Zhao W, Wang Q. et al. Characterization and functional prediction of bacteria in ovarian tissues. J Vis Exp 2021; (176) e61878
  • 56 Qin X, Zhou J, Wang Z. et al. Metagenomic analysis of the microbiome of the upper reproductive tract: combating ovarian cancer through predictive, preventive, and personalized medicine. EPMA J 2022; 13 (03) 487-498
  • 57 Ou S, Liao M, Cui L. et al. Associations between microbial presence in follicular fluid with IVF outcomes: a systematic review and meta-analysis. J Assist Reprod Genet 2023; 40 (11) 2501-2511
  • 58 Pelzer ES, Allan JA, Waterhouse MA, Ross T, Beagley KW, Knox CL. Microorganisms within human follicular fluid: effects on IVF. PLoS One 2013; 8 (03) e59062
  • 59 Usman SF, Shuaibu IR, Durojaiye K, Medugu N, Iregbu KC. The presence of microorganisms in follicular fluid and its effect on the outcome of in vitro fertilization-embryo transfer (IVF-ET) treatment cycles. PLoS One 2021; 16 (02) e0246644
  • 60 Cottell E, McMorrow J, Lennon B, Fawsy M, Cafferkey M, Harrison RF. Microbial contamination in an in vitro fertilization-embryo transfer system. Fertil Steril 1996; 66 (05) 776-780
  • 61 Kim S, Kim S, Won K, Lee J, Suh C, Kim S. The incidence of positive bacterial colonization in human follicular fluids and its impact on clinical in vitro fertilization outcomes. Fertil Steril 2018; 110 (04) e194
  • 62 Wei W, Zhou Y, Zuo H. et al. Characterization of the follicular fluid microbiota based on culturomics and sequencing analysis. J Med Microbiol 2023;72(08):
  • 63 Elkafas H, Walls M, Al-Hendy A, Ismail N. Gut and genital tract microbiomes: dysbiosis and link to gynecological disorders. Front Cell Infect Microbiol 2022; 12: 1059825
  • 64 Madhogaria B, Bhowmik P, Kundu A. Correlation between human gut microbiome and diseases. Infect Med 2022; 1 (03) 180-191
  • 65 Chase D, Goulder A, Zenhausern F, Monk B, Herbst-Kralovetz M. The vaginal and gastrointestinal microbiomes in gynecologic cancers: a review of applications in etiology, symptoms and treatment. Gynecol Oncol 2015; 138 (01) 190-200
  • 66 Sipos A, Ujlaki G, Mikó E. et al. The role of the microbiome in ovarian cancer: mechanistic insights into oncobiosis and to bacterial metabolite signaling. Mol Med 2021; 27 (01) 33
  • 67 Zhou B, Sun C, Huang J. et al. The biodiversity composition of microbiome in ovarian carcinoma patients. Sci Rep 2019; 9 (01) 1691
  • 68 Yang J, Tan Q, Fu Q. et al. Gastrointestinal microbiome and breast cancer: correlations, mechanisms and potential clinical implications. Breast Cancer 2017; 24 (02) 220-228
  • 69 Baker JM, Al-Nakkash L, Herbst-Kralovetz MM. Estrogen-gut microbiome axis: physiological and clinical implications. Maturitas 2017; 103: 45-53
  • 70 Xu S, Liu Z, Lv M, Chen Y, Liu Y. Intestinal dysbiosis promotes epithelial-mesenchymal transition by activating tumor-associated macrophages in ovarian cancer. Pathog Dis 2019; 77 (02) ftz019
  • 71 Lin HW, Tu YY, Lin SY. et al. Risk of ovarian cancer in women with pelvic inflammatory disease: a population-based study. Lancet Oncol 2011; 12 (09) 900-904
  • 72 Rasmussen CB, Faber MT, Jensen A. et al. Pelvic inflammatory disease and risk of invasive ovarian cancer and ovarian borderline tumors. Cancer Causes Control 2013; 24 (07) 1459-1464
  • 73 Rasmussen CB, Jensen A, Albieri V, Andersen KK, Kjaer SK. Is pelvic inflammatory disease a risk factor for ovarian cancer?. Cancer Epidemiol Biomarkers Prev 2017; 26 (01) 104-109
  • 74 Idahl A, Lundin E, Jurstrand M. et al. Chlamydia trachomatis and Mycoplasma genitalium plasma antibodies in relation to epithelial ovarian tumors. Infect Dis Obstet Gynecol 2011; 2011: 824627
  • 75 Al-Shabanah OA, Hafez MM, Hassan ZK. et al. Human papillomavirus genotyping and integration in ovarian cancer Saudi patients. Virol J 2013; 10 (01) 343
  • 76 Ingerslev K, Hogdall E, Skovrider-Ruminski W. et al. High-risk HPV is not associated with epithelial ovarian cancer in a Caucasian population. Infect Agent Cancer 2016; 11 (01) 39
  • 77 Finotello F, Mastrorilli E, Di Camillo B. Measuring the diversity of the human microbiota with targeted next-generation sequencing. Brief Bioinform 2018; 19 (04) 679-692
  • 78 Photopoulos J. Ovarian cancer and the microbiome: a complex relationship. Nature 2021; 600 (7889): S40-S41
  • 79 Duan L, An X, Zhang Y. et al. Gut microbiota as the critical correlation of polycystic ovary syndrome and type 2 diabetes mellitus. Biomed Pharmacother 2021; 142: 112094
  • 80 Sola-Leyva A, Pérez-Prieto I, Molina NM. et al. Microbial composition across body sites in polycystic ovary syndrome: a systematic review and meta-analysis. Reprod Biomed Online 2023; 47 (01) 129-150
  • 81 Hong X, Qin P, Huang K. et al. Association between polycystic ovary syndrome and the vaginal microbiome: a case-control study. Clin Endocrinol (Oxf) 2020; 93 (01) 52-60
  • 82 Tu Y, Zheng G, Ding G. et al. Comparative analysis of lower genital tract microbiome between PCOS and healthy women. Front Physiol 2020; 11: 1108
  • 83 Qi X, Yun C, Pang Y, Qiao J. The impact of the gut microbiota on the reproductive and metabolic endocrine system. Gut Microbes 2021; 13 (01) 1-21
  • 84 Liu R, Zhang C, Shi Y. et al. Dysbiosis of gut microbiota associated with clinical parameters in polycystic ovary syndrome. Front Microbiol 2017; 8: 324
  • 85 Colldén H, Landin A, Wallenius V. et al. The gut microbiota is a major regulator of androgen metabolism in intestinal contents. Am J Physiol Endocrinol Metab 2019; 317 (06) E1182-E1192
  • 86 Wang Q, Wang Q, Zhao L. et al. Blood bacterial 16S rRNA gene alterations in women with polycystic ovary syndrome. Front Endocrinol (Lausanne) 2022; 13: 814520
  • 87 Jobira B, Frank DN, Pyle L. et al. Obese adolescents with PCOS have altered biodiversity and relative abundance in gastrointestinal microbiota. J Clin Endocrinol Metab 2020; 105 (06) e2134-e2144
  • 88 Li N, Li Y, Qian C. et al. Dysbiosis of the saliva microbiome in patients with polycystic ovary syndrome. Front Cell Infect Microbiol 2021; 10: 624504
  • 89 Thackray VG. Sex, microbes, and polycystic ovary syndrome. Trends Endocrinol Metab 2019; 30 (01) 54-65
  • 90 Lindheim L, Bashir M, Münzker J. et al. Alterations in gut microbiome composition and barrier function are associated with reproductive and metabolic defects in women with polycystic ovary syndrome (PCOS): a pilot study. PLoS One 2017; 12 (01) e0168390
  • 91 Zeng B, Lai Z, Sun L. et al. Structural and functional profiles of the gut microbial community in polycystic ovary syndrome with insulin resistance (IR-PCOS): a pilot study. Res Microbiol 2019; 170 (01) 43-52
  • 92 Liang Y, Ming Q, Liang J, Zhang Y, Zhang H, Shen T. Gut microbiota dysbiosis in polycystic ovary syndrome: association with obesity: a preliminary report. Can J Physiol Pharmacol 2020; 98 (11) 803-809
  • 93 Eyupoglu ND, Ergunay K, Acikgoz A, Akyon Y, Yilmaz E, Yildiz BO. Gut microbiota and oral contraceptive use in overweight and obese patients with polycystic ovary syndrome. J Clin Endocrinol Metab 2020; 105 (12) e4792-e4800
  • 94 Zhu X, Li Y, Jiang Y. et al. Prediction of gut microbial community structure and function in polycystic ovary syndrome with high low-density lipoprotein cholesterol. Front Cell Infect Microbiol 2021; 11: 665406
  • 95 Dong S, Jiao J, Jia S. et al. 16S rDNA full-length assembly sequencing technology analysis of intestinal microbiome in polycystic ovary syndrome. Front Cell Infect Microbiol 2021; 11: 634981
  • 96 Lüll K, Arffman RK, Sola-Leyva A. et al. The gut microbiome in polycystic ovary syndrome and its association with metabolic traits. J Clin Endocrinol Metab 2021; 106 (03) 858-871
  • 97 Huang J, Liu L, Chen C, Gao Y. PCOS without hyperandrogenism is associated with higher plasma trimethylamine N-oxide levels. BMC Endocr Disord 2020; 20 (01) 3
  • 98 Eyupoglu ND, Caliskan Guzelce E, Acikgoz A. et al. Circulating gut microbiota metabolite trimethylamine N-oxide and oral contraceptive use in polycystic ovary syndrome. Clin Endocrinol (Oxf) 2019; 91 (06) 810-815
  • 99 Zhao Y, Fu L, Li R. et al. Metabolic profiles characterizing different phenotypes of polycystic ovary syndrome: plasma metabolomics analysis. BMC Med 2012; 10 (01) 153
  • 100 Gillis CC, Hughes ER, Spiga L. et al. Dysbiosis-associated change in host metabolism generates lactate to support Salmonella growth. Cell Host Microbe 2018; 23 (01) 54-64.e6
  • 101 Scheiman J, Luber JM, Chavkin TA. et al. Meta-omics analysis of elite athletes identifies a performance-enhancing microbe that functions via lactate metabolism. Nat Med 2019; 25 (07) 1104-1109
  • 102 Qi X, Yun C, Sun L. et al. Gut microbiota-bile acid-interleukin-22 axis orchestrates polycystic ovary syndrome. Nat Med 2019; 25 (08) 1225-1233
  • 103 Jia C, Xu H, Xu Y, Xu Y, Shi Q. Serum metabolomics analysis of patients with polycystic ovary syndrome by mass spectrometry. Mol Reprod Dev 2019; 86 (03) 292-297
  • 104 Sun Y, Gao S, Ye C, Zhao W. Gut microbiota dysbiosis in polycystic ovary syndrome: mechanisms of progression and clinical applications. Front Cell Infect Microbiol 2023; 13: 1142041
  • 105 Gholizadeh Shamasbi S, Dehgan P, Mohammad-Alizadeh Charandabi S, Aliasgarzadeh A, Mirghafourvand M. The effect of resistant dextrin as a prebiotic on metabolic parameters and androgen level in women with polycystic ovarian syndrome: a randomized, triple-blind, controlled, clinical trial. Eur J Nutr 2019; 58 (02) 629-640
  • 106 Zhang J, Sun Z, Jiang S. et al. Probiotic Bifidobacterium lactis V9 regulates the secretion of sex hormones in polycystic ovary syndrome patients through the gut-brain axis. mSystems 2019; 4 (02) e00017-19
  • 107 Xue J, Li X, Liu P. et al. Inulin and metformin ameliorate polycystic ovary syndrome via anti-inflammation and modulating gut microbiota in mice. Endocr J 2019; 66 (10) 859-870
  • 108 Swenson CE, Donegan E, Schachter J. Chlamydia trachomatis-induced salpingitis in mice. J Infect Dis 1983; 148 (06) 1101-1107
  • 109 Mårdh PA, Weström L. Tubal and cervical cultures in acute salpingitis with special reference to Mycoplasma hominis and T-strain mycoplasmas. Br J Vener Dis 1970; 46 (03) 179-186
  • 110 Punia RS, Aggarwal R, Amanjit, Mohan H. Xanthogranulomatous oophoritis and salpingitis: late sequelae of inadequately treated staphylococcal PID. Indian J Pathol Microbiol 2003; 46 (01) 80-81
  • 111 Hebb JK, Cohen CR, Astete SG, Bukusi EA, Totten PA. Detection of novel organisms associated with salpingitis, by use of 16S rDNA polymerase chain reaction. J Infect Dis 2004; 190 (12) 2109-2120
  • 112 Kyo S, Ishikawa N, Nakamura K, Nakayama K. The fallopian tube as origin of ovarian cancer: change of diagnostic and preventive strategies. Cancer Med 2020; 9 (02) 421-431
  • 113 Yu B, Liu C, Fredricks D, Swisher E. Microbiome profiling of fallopian tubes. Gynecol Oncol 2020; 156 (03) e26
  • 114 Vitale SG, Carugno J, D'Alterio MN, Mikuš M, Patrizio P, Angioni S. A new methodology to assess fallopian tubes microbiota and its impact on female fertility. Diagnostics (Basel) 2022; 12 (06) 1375
  • 115 Venneri MA, Franceschini E, Sciarra F, Rosato E, D'Ettorre G, Lenzi A. Human genital tracts microbiota: dysbiosis crucial for infertility. J Endocrinol Invest 2022; 45 (06) 1151-1160
  • 116 Mändar R, Punab M, Borovkova N. et al. Complementary seminovaginal microbiome in couples. Res Microbiol 2015; 166 (05) 440-447
  • 117 Koort K, Sõsa K, Türk S. et al. Lactobacillus crispatus-dominated vaginal microbiome and Acinetobacter-dominated seminal microbiome support beneficial ART outcome. Acta Obstet Gynecol Scand 2023; 102 (07) 921-93
  • 118 Ridlon JM, Ikegawa S, Alves JMP. et al. Clostridium scindens: a human gut microbe with a high potential to convert glucocorticoids into androgens. J Lipid Res 2013; 54 (09) 2437-2449
  • 119 Lindheim L, Bashir M, Münzker J. et al. The salivary microbiome in polycystic ovary syndrome (PCOS) and its association with disease-related parameters: a pilot study. Front Microbiol 2016; 7: 1270