Synthesis 2024; 56(09): 1381-1392
DOI: 10.1055/s-0043-1763679
paper

Stereoselective Synthesis of 3,4-Dihydrobenzofuro[3,2-b]pyridin-2(1H)-ones Enabled by Pd/Chiral Isothiourea Relay Catalysis

Mostafa Sayed
a   Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
b   Chemistry Department, Faculty of Science, New Valley University, El-Kharja 72511, Egypt
,
Zhipeng Shi
a   Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
,
Tao Fan
a   Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
,
Hong-Cheng Shen
a   Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
,
Zhi-Yong Han
a   Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
› Institutsangaben
We are grateful for the financial support from NSFC (Grants 21831007, 21971231).


Abstract

A highly enantioselective [4+2] cyclization of azadienes with ketene in situ generated from Pd-catalyzed carbonylation of benzyl bromides, is established through Pd/chiral isothiourea relay catalysis. The key in this transformation is the formation of a C1-ammonium enolate from the in situ generated ketene and a chiral isothiourea catalyst, which subsequently undergoes a formal [4+2] reaction, leading to 3,4-dihydrobenzofuro[3,2-b]pyridine derivatives in high yields and excellent levels of stereoselectivity.

Supporting Information



Publikationsverlauf

Eingereicht: 27. November 2023

Angenommen nach Revision: 22. Januar 2024

Artikel online veröffentlicht:
13. Februar 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Du Z, Shao Z. Chem. Soc. Rev. 2013; 42: 1337
    • 1b Chen DF, Han ZY, Zhou XL, Gong LZ. Acc. Chem. Res. 2014; 47: 2365
    • 1c Chen D.-F, Gong L.-Z. J. Am. Chem. Soc. 2022; 144: 2415
    • 1d Chakraborty N, Das B, Rajbongshi KK, Patel BK. Eur. J. Org. Chem. 2022; 86
    • 1e Gong LZ. Asymmetric Organo-Metal Catalysis: Concepts, Principles, and Applications. Wiley-VCH; Weinheim: 2022
    • 2a Afewerki S, Córdova A. Chem. Rev. 2016; 116: 13512
    • 2b Afewerki S, Córdova A. Top. Curr. Chem. 2019; 377: 38
    • 2c Han J, Liu R, Lin Z, Zi W. Angew. Chem. Int. Ed. 2023; 62: e202215714
    • 2d Uchikura T, Kato S, Makino Y, Fujikawa MJ, Yamanaka M, Akiyama T. J. Am. Chem. Soc. 2023; 145: 15906
    • 3a Merad J, Pons J.-M, Chuzel O, Bressy C. Eur. J. Org. Chem. 2016; 5589
    • 3b Birman VB, Jiang H, Li X, Guo L, Uffman EW. J. Am. Chem. Soc. 2006; 128: 6536
    • 3c Birman VB, Li X. Org. Lett. 2006; 8: 1351
    • 3d Birman VB, Li X. Org. Lett. 2008; 10: 1115
    • 4a Gaunt MJ, Johansson CC. C. Chem. Rev. 2007; 107: 5596
    • 4b Taylor JE, Bull SD, Williams JM. J. Chem. Soc. Rev. 2012; 41: 2109
    • 4c Morrill LC, Smith AD. Chem. Soc. Rev. 2014; 43: 6214
    • 4d Vellalath S, Romo D. Angew. Chem. Int. Ed. 2016; 55: 13934
  • 5 Müller CE, Schreiner PR. Angew. Chem. Int. Ed. 2011; 50: 6012
    • 6a Stark DG, Morrill LC, Cordes DB, Slawin AM. Z, O’Riordan TJ. C, Smith AD. Chem. Asian J. 2016; 11: 395
    • 6b Young CM, Stark DG, West TH, Taylor JE, Smith AD. Angew. Chem. Int. Ed. 2016; 55: 14394
    • 6c West TH, Walden DM, Taylor JE, Brueckner AC, Johnston RC, Cheong PH.-Y, Lloyd-Jones GC, Smith AD. J. Am. Chem. Soc. 2017; 139: 4366
    • 6d Arokianathar JN, Frost AB, Slawin AM. Z, Stead D, Smith AD. ACS Catal. 2018; 8: 1153
    • 6e Morrill LC, Stark DG, Taylor JE, Smith SR, Squires JA, D’Hollander AC. A, Simal C, Shapland P, O’Riordan TJ. C, Smith AD. Org. Biomol. Chem. 2014; 12: 9016
  • 7 Schwarz KJ, Amos JL, Klein JC, Do DT, Snaddon TN. J. Am. Chem. Soc. 2016; 138: 5214
    • 8a Song J, Zhang Z.-J, Gong L.-Z. Angew. Chem. Int. Ed. 2017; 56: 5212
    • 8b Song J, Zhang Z.-J, Chen S.-S, Fan T, Gong L.-Z. J. Am. Chem. Soc. 2018; 140: 3177
    • 8c Schwarz KJ, Yang C, Fyfe JW. B, Snaddon TN. Angew. Chem. Int. Ed. 2018; 57: 12102
    • 8d Schwarz KJ, Pearson CM, Cintron-Rosado GA, Liu P, Snaddon TN. Angew. Chem. Int. Ed. 2018; 57: 7800
    • 8e Schwarz KJ, Yang C, Fyfe JW. B, Snaddon TN. Angew. Chem. Int. Ed. 2018; 57: 12102
    • 8f Scaggs WR, Snaddon TN. Chem. Eur. J. 2018; 24: 14378
    • 8g Fyfe JW. B, Kabia OM, Pearson CM, Snaddon TN. Tetrahedron 2018; 74: 5383
    • 8h Pearson CM, Fyfe JW. B, Snaddon TN. Angew. Chem. Int. Ed. 2019; 58: 10521
    • 8i Rush Scaggs W, Scaggs TD, Snaddon TN. Org. Biomol. Chem. 2019; 17: 1787
    • 8j Pearson CM, Fyfe JW. B, Snaddon TN. Angew. Chem. Int. Ed. 2019; 58: 10521
    • 8k Hutchings-Goetz LS, Yang C, Fyfe JW. B, Snaddon TN. Angew. Chem. Int. Ed. 2020; 59: 17556
    • 8l Tian F, Yang W.-L, Ni T, Zhang J, Deng W.-P. Sci. China Chem. 2021; 64: 34
    • 8m Bitai J, Nimmo AJ, Slawin AM. Z, Smith AD. Angew. Chem. Int. Ed. 2022; 61: e202202621
    • 8n Lin H.-C, Knox GJ, Pearson CM, Yang C, Carta V, Snaddon TN. Angew. Chem. Int. Ed. 2022; 61: e202201753
    • 8o Zhu M, Wang P, Zhang Q, Tang W, Zi W. Angew. Chem. Int. Ed. 2022; 61: e202207621
    • 8p Wang Q, Fan T, Song J. Org. Lett. 2023; 25: 1246
    • 8q Merad J, Pons J.-M, Chuzel O, Bressy C. Eur. J. Org. Chem. 2016; 5589
    • 8r Sayed M, Han Z.-Y, Gong L.-Z. Chem. Synth. 2023; 3: 20
    • 9a Zeng R, Shan C, Liu M, Jiang K, Ye Y, Liu T.-Y, Chen Y.-C. Org. Lett. 2019; 21: 2312
    • 9b Xie H.-P, Sun L, Wu B, Zhou Y.-G. J. Org. Chem. 2019; 84: 15498
    • 9c Marques A.-S, Duhail T, Marrot J, Chataigner I, Coeffard V, Vincent G, Moreau X. Angew. Chem. Int. Ed. 2019; 58: 9969
    • 9d Zeng R, Shan C, Liu M, Jiang K, Ye Y, Liu T.-Y, Chen Y.-C. Org. Lett. 2019; 21: 2312
    • 9e Liu Y.-Z, Wang Z, Huang Z, Zheng X, Yang W.-L, Deng W.-P. Angew. Chem. Int. Ed. 2020; 59: 1238
    • 9f Zhu C.-F, Chen L.-Q, Hao W.-J, Cui C.-C, Tu S.-J, Jiang B. Org. Lett. 2021; 23: 2654
    • 9g Hu Y, Shi W, Yan Z, Liao J, Liu M, Xu J, Wang W, Wu Y, Zhang C, Guo H. Org. Lett. 2021; 23: 6780
    • 9h Zhu C.-F, Chen L.-Q, Hao W.-J, Cui CC, Tu S.-J. Jiang B. 2021; 23: 2654
    • 9i Koay WL, Mei G.-J, Lu Y. Org. Chem. Front. 2021; 8: 968
  • 10 Fan T, Zhang Z.-J, Zhang Y.-C, Song J. Org. Lett. 2019; 21: 7897
  • 11 Rong Z.-Q, Wang M, Chow CH. E, Zhao Y. Chem. Eur. J. 2016; 22: 9483
    • 12a Li LL, Ding D, Song J, Han ZY, Gong LZ. Angew. Chem. Int. Ed. 2019; 58: 7647
    • 12b Ding W.-W, Zhou Y, Han Z.-Y, Gong L.-Z. J. Org. Chem. 2023; 88: 5187
    • 12c Sayed M, Shi Z, Han Z.-Y, Gong L.-Z. Org. Biomol. Chem. 2023; 21: 7305
  • 13 CCDC 2320793 (3p) contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures
  • 14 Gao Z.-H, Chen K.-Q, Zhang Y, Kong L.-M, Li Y, Ye S. J. Org. Chem. 2018; 83: 15225