Thromb Haemost 2023; 123(04): 438-452
DOI: 10.1055/s-0043-1760844
Stroke, Systemic or Venous Thromboembolism

Multiallelic Copy Number Variation in ORM1 is Associated with Plasma Cell-Free DNA Levels as an Intermediate Phenotype for Venous Thromboembolism

1   Genomics of Complex Diseases Unit, Research Institute Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain
2   Congenital Coagulopathies Laboratory, Blood and Tissue Bank, Barcelona, Spain
3   Fundación Española de Trombosis y Hemostasia (FETH), Madrid, Spain
4   Transfusional Medicine, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona (VHIR-UAB), Barcelona, Spain
,
2   Congenital Coagulopathies Laboratory, Blood and Tissue Bank, Barcelona, Spain
4   Transfusional Medicine, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona (VHIR-UAB), Barcelona, Spain
,
1   Genomics of Complex Diseases Unit, Research Institute Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain
,
1   Genomics of Complex Diseases Unit, Research Institute Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain
,
Noelia Vilalta
5   Hemostasis and Thrombosis Unit, Department of Hematology, Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain
,
Melania Plaza
5   Hemostasis and Thrombosis Unit, Department of Hematology, Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain
,
Carla Moret
5   Hemostasis and Thrombosis Unit, Department of Hematology, Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain
,
Ana Viñuela
6   Biosciences Institute, Faculty of Medicine, Newcastle University, Newcastle Upon Tyne, United Kingdom
,
Andrew A. Brown
7   Population Health and Genomics, University of Dundee, Dundee, Scotland, United Kingdom
,
Nikolaos I. Panousis
8   Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, South Cambridgeshire, United Kingdom
9   Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
,
Alfonso Buil
10   Institute of Biological Psychiatry, Mental Health Sct. Hans Hospital, Roskilde, Denmark
,
Emmanouil T. Dermitzakis
9   Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
,
Irene Corrales
2   Congenital Coagulopathies Laboratory, Blood and Tissue Bank, Barcelona, Spain
4   Transfusional Medicine, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona (VHIR-UAB), Barcelona, Spain
11   Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto Carlos III (ISCIII), Madrid, Spain
,
Juan Carlos Souto
5   Hemostasis and Thrombosis Unit, Department of Hematology, Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain
,
2   Congenital Coagulopathies Laboratory, Blood and Tissue Bank, Barcelona, Spain
4   Transfusional Medicine, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona (VHIR-UAB), Barcelona, Spain
11   Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto Carlos III (ISCIII), Madrid, Spain
,
Jose Manuel Soria
1   Genomics of Complex Diseases Unit, Research Institute Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain
› Author Affiliations
Funding This study was supported by grants of the Spanish Government Instituto de Salud Carlos III and Fondo de Investigación Sanitaria (ISCIII-FIS) (PI14/00582, PI20/00325, J.M.S. and S.L.; PI21/01772, J.C.S.), the Grupo Consolidado Generalitat de Catalunya (SGR 1736, J.M.S.), the CERCA Programme/Generalitat de Catalunya, the Fundación Española de Trombosis y Hemostasia (FETH, L.M.-F.), and the nonprofit association Activa'TT por la Salud. CIBERCV is an initiative of the ISCIII, and is co-financed by the European Regional Development Fund (ERDF), “A way to make Europe.”


Abstract

Venous thromboembolism (VTE) is a common disease with high heritability. However, only a small portion of the genetic variance of VTE can be explained by known genetic risk factors. Neutrophil extracellular traps (NETs) have been associated with prothrombotic activity. Therefore, the genetic basis of NETs could reveal novel risk factors for VTE. A recent genome-wide association study of plasma cell-free DNA (cfDNA) levels in the Genetic Analysis of Idiopathic Thrombophilia 2 (GAIT-2) Project showed a significant associated locus near ORM1. We aimed to further explore this candidate region by next-generation sequencing, copy number variation (CNV) quantification, and expression analysis using an extreme phenotype sampling design involving 80 individuals from the GAIT-2 Project. The RETROVE study with 400 VTE cases and 400 controls was used to replicate the results. A total of 105 genetic variants and a multiallelic CNV (mCNV) spanning ORM1 were identified in GAIT-2. Of these, 17 independent common variants, a region of 22 rare variants, and the mCNV were significantly associated with cfDNA levels. In addition, eight of these common variants and the mCNV influenced ORM1 expression. The association of the mCNV and cfDNA levels was replicated in RETROVE (p-value = 1.19 × 10−6). Additional associations between the mCNV and thrombin generation parameters were identified. Our results reveal that increased mCNV dosages in ORM1 decreased gene expression and upregulated cfDNA levels. Therefore, the mCNV in ORM1 appears to be a novel marker for cfDNA levels, which could contribute to VTE risk.

Supplementary Material



Publication History

Received: 02 June 2022

Accepted: 20 November 2022

Article published online:
25 January 2023

© 2023. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Rosendaal FR. Causes of venous thrombosis. Thromb J 2016; 14 (Suppl 1): 24
  • 2 Naess IA, Christiansen SC, Romundstad P, Cannegieter SC, Rosendaal FR, Hammerstrøm J. Incidence and mortality of venous thrombosis: a population-based study. J Thromb Haemost 2007; 5 (04) 692-699
  • 3 Heit JA, Mohr DN, Silverstein MD, Petterson TM, O'Fallon WM, Melton III LJ. Predictors of recurrence after deep vein thrombosis and pulmonary embolism: a population-based cohort study. Arch Intern Med 2000; 160 (06) 761-768
  • 4 Prandoni P, Noventa F, Ghirarduzzi A. et al. The risk of recurrent venous thromboembolism after discontinuing anticoagulation in patients with acute proximal deep vein thrombosis or pulmonary embolism. A prospective cohort study in 1,626 patients. Haematologica 2007; 92 (02) 199-205
  • 5 Rosendaal FR. Venous thrombosis: a multicausal disease. Lancet 1999; 353 (9159): 1167-1173
  • 6 Souto JC. Search for new thrombosis-related genes through intermediate phenotypes. Genetic and household effects. Pathophysiol Haemost Thromb 2002; 32 (5–6): 338-340
  • 7 Heit JA, Phelps MA, Ward SA, Slusser JP, Petterson TM, De Andrade M. Familial segregation of venous thromboembolism. J Thromb Haemost 2004; 2 (05) 731-736
  • 8 Martin-Fernandez L, Ziyatdinov A, Carrasco M. et al. Genetic determinants of thrombin generation and their relation to venous thrombosis: results from the GAIT-2 project. PLoS One 2016; 11 (01) e0146922
  • 9 Souto JC, Almasy L, Borrell M. et al. Genetic susceptibility to thrombosis and its relationship to physiological risk factors: the GAIT study. Genetic Analysis of Idiopathic Thrombophilia. Am J Hum Genet 2000; 67 (06) 1452-1459
  • 10 Soria JM, Morange P-E, Vila J. et al. Multilocus genetic risk scores for venous thromboembolism risk assessment. J Am Heart Assoc 2014; 3 (05) e001060
  • 11 Reitsma PH, Versteeg HH, Middeldorp S. Mechanistic view of risk factors for venous thromboembolism. Arterioscler Thromb Vasc Biol 2012; 32 (03) 563-568
  • 12 von Brühl ML, Stark K, Steinhart A. et al. Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo. J Exp Med 2012; 209 (04) 819-835
  • 13 Fuchs TA, Brill A, Duerschmied D. et al. Extracellular DNA traps promote thrombosis. Proc Natl Acad Sci U S A 2010; 107 (36) 15880-15885
  • 14 Brill A, Fuchs TA, Savchenko AS. et al. Neutrophil extracellular traps promote deep vein thrombosis in mice. J Thromb Haemost 2012; 10 (01) 136-144
  • 15 Fuchs TA, Brill A, Wagner DD. Neutrophil extracellular trap (NET) impact on deep vein thrombosis. Arterioscler Thromb Vasc Biol 2012; 32 (08) 1777-1783
  • 16 Fuchs TA, Hakkim A, Urban CF. Neutrophil extracellular traps. Inflammation: fundamental mechanisms 2018: 205-275
  • 17 Brinkmann V, Reichard U, Goosmann C. et al. Neutrophil extracellular traps kill bacteria. Science 2004; 303 (5663): 1532-1535
  • 18 Savchenko AS, Martinod K, Seidman MA. et al. Neutrophil extracellular traps form predominantly during the organizing stage of human venous thromboembolism development. J Thromb Haemost 2014; 12 (06) 860-870
  • 19 Diaz JA, Fuchs TA, Jackson TO. et al; for the Michigan Research Venous Group*. Plasma DNA is elevated in patients with deep vein thrombosis. J Vasc Surg Venous Lymphat Disord 2013; 1 (04) 341.e1-348.e1
  • 20 van Montfoort ML, Stephan F, Lauw MN. et al. Circulating nucleosomes and neutrophil activation as risk factors for deep vein thrombosis. Arterioscler Thromb Vasc Biol 2013; 33 (01) 147-151
  • 21 Liu L, Zhang W, Su Y, Chen Y, Cao X, Wu J. The impact of neutrophil extracellular traps on deep venous thrombosis in patients with traumatic fractures. Clin Chim Acta 2021; 519: 231-238
  • 22 Lopez S, Martinez-Perez A, Rodriguez-Rius A. et al. Integrated GWAS and gene expression suggest ORM1 as a potential regulator of plasma levels of cell-free DNA and thrombosis risk. Thromb Haemost 2022; 122 (06) 1027-1039
  • 23 Rocanin-Arjo A, Cohen W, Carcaillon L. et al; CardioGenics Consortium. A meta-analysis of genome-wide association studies identifies ORM1 as a novel gene controlling thrombin generation potential. Blood 2014; 123 (05) 777-785
  • 24 Yuasa I, Umetsu K, Vogt U. et al. Human orosomucoid polymorphism: molecular basis of the three common ORM1 alleles, ORM1*F1, ORM1*F2, and ORM1*S. Hum Genet 1997; 99 (03) 393-398
  • 25 Ma N, Yang Y, Liu X, Li S, Qin Z, Li J. Plasma metabonomics and proteomics studies on the anti-thrombosis mechanism of aspirin eugenol ester in rat tail thrombosis model. J Proteomics 2020; 215: 103631
  • 26 Haeussler M, Zweig AS, Tyner C. et al. The UCSC Genome Browser database: 2019 update. Nucleic Acids Res 2019; 47 (D1): D853-D858
  • 27 Handsaker RE, Van Doren V, Berman JR. et al. Large multiallelic copy number variations in humans. Nat Genet 2015; 47 (03) 296-303
  • 28 Redon R, Ishikawa S, Fitch KR. et al. Global variation in copy number in the human genome. Nature 2006; 444 (7118): 444-454
  • 29 Miller SA, Dykes DD, Polesky HF. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 1988; 16 (03) 1215
  • 30 Sherry ST, Ward MH, Kholodov M. et al. dbSNP: the NCBI database of genetic variation. Nucleic Acids Res 2001; 29 (01) 308-311
  • 31 R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria; 2020
  • 32 Bjørnland T, Bye A, Ryeng E, Wisløff U, Langaas M. Powerful extreme phenotype sampling designs and score tests for genetic association studies. Stat Med 2018; 37 (28) 4234-4251
  • 33 Barnett IJ, Lee S, Lin X. Detecting rare variant effects using extreme phenotype sampling in sequencing association studies. Genet Epidemiol 2013; 37 (02) 142-151
  • 34 Lee S, Wu MC, Lin X. Optimal tests for rare variant effects in sequencing association studies. Biostatistics 2012; 13 (04) 762-775
  • 35 Purcell S, Neale B, Todd-Brown K. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 2007; 81 (03) 559-575
  • 36 Dudbridge F. Likelihood-based association analysis for nuclear families and unrelated subjects with missing genotype data. Hum Hered 2008; 66 (02) 87-98
  • 37 Stephens M, Smith NJ, Donnelly P. A new statistical method for haplotype reconstruction from population data. Am J Hum Genet 2001; 68 (04) 978-989
  • 38 Vázquez-Santiago M, Vilalta N, Cuevas B. et al. Short closure time values in PFA-100® are related to venous thrombotic risk. Results from the RETROVE Study. Thromb Res 2018; 169: 57-63
  • 39 Hemker HC, Wielders S, Kessels H, Béguin S. Continuous registration of thrombin generation in plasma, its use for the determination of the thrombin potential. Thromb Haemost 1993; 70 (04) 617-624
  • 40 The 1000 Genomes Project Consortium, Auton A, Brooks LD, Durbin RM. et al. A global reference for human genetic variation. Nature 2015; 526: 68-74
  • 41 Huang BE, Lin DY. Efficient association mapping of quantitative trait loci with selective genotyping. Am J Hum Genet 2007; 80 (03) 567-576
  • 42 ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature 2012; 489 (7414): 57-74
  • 43 Battle A, Brown CD, Engelhardt BE, Montgomery SB. GTEx Consortium, Laboratory, Data Analysis &Coordinating Center (LDACC)—Analysis Working Group, Statistical Methods groups—Analysis Working Group, Enhancing GTEx (eGTEx) groups, NIH Common Fund, NIH/NCI, NIH/NHGRI, NIH/NIMH, NIH/NIDA, Biospecimen Collection Source Site—NDRI, Biospecimen Collection Source Site—RPCI, Biospecimen Core Resource—VARI, Brain Bank Repository—University of Miami Brain Endowment Bank, Leidos Biomedical—Project Management, ELSI Study, Genome Browser Data Integration &Visualization—EBI, Genome Browser Data Integration &Visualization—UCSC Genomics Institute, University of California Santa Cruz, Lead analysts, Laboratory, Data Analysis &Coordinating Center (LDACC), NIH program management, Biospecimen collection, Pathology, eQTL manuscript working group. Genetic effects on gene expression across human tissues. Nature 2017; 550 (7675): 204-213
  • 44 Buniello A, MacArthur JAL, Cerezo M. et al. The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019. Nucleic Acids Res 2019; 47 (D1): D1005-D1012
  • 45 Williams FMK, Carter AM, Hysi PG. et al; EuroCLOT Investigators, Wellcome Trust Case Control Consortium 2, MOnica Risk, Genetics, Archiving and Monograph, MetaStroke, International Stroke Genetics Consortium. Ischemic stroke is associated with the ABO locus: the EuroCLOT study. Ann Neurol 2013; 73 (01) 16-31
  • 46 Gudjonsson A, Gudmundsdottir V, Axelsson GT. et al. A genome-wide association study of serum proteins reveals shared loci with common diseases. Nat Commun 2022; 13 (01) 480
  • 47 Sun BB, Maranville JC, Peters JE. et al. Genomic atlas of the human plasma proteome. Nature 2018; 558 (7708): 73-79
  • 48 Carty CL, Keene KL, Cheng YC. et al; COMPASS and METASTROKE Consortia. Meta-analysis of genome-wide association studies identifies genetic risk factors for stroke in African Americans. Stroke 2015; 46 (08) 2063-2068
  • 49 Chen MH, Raffield LM, Mousas A. et al; VA Million Veteran Program. Trans-ethnic and ancestry-specific blood-cell genetics in 746,667 individuals from 5 global populations. Cell 2020; 182 (05) 1198.e14-1213.e14
  • 50 Gould TJ, Vu TT, Swystun LL. et al. Neutrophil extracellular traps promote thrombin generation through platelet-dependent and platelet-independent mechanisms. Arterioscler Thromb Vasc Biol 2014; 34 (09) 1977-1984