Synlett 2024; 35(08): 851-861
DOI: 10.1055/s-0042-1751519
account
Special Issue dedicated to Keith Fagnou

Nickel-Catalyzed sp3 C–H Activation

,
Shangyu Li
,
Ramon Arora
,
Bijan Mirabi
,
Mark Lautens
We thank the University of Toronto (UofT), the Natural Science and Engineering Research Council (NSERC), Alphora Research Inc. and Kennarshore Inc. for financial support. C. E. J. thanks the Ontario government for an OGS fellowship. R. A. thanks NSERC for a CGS-D fellowship. B. M. thanks NSERC for a CGS-D fellowship.


Abstract

Base metal catalyzed C–H activation represents a highly atom economic method to access functionalized molecules. This Account will focus on Ni-catalyzed C–H activation of sp3-hybridized carbon atoms with a particular focus on mechanism, recent applications, challenges, and outlook in this area. This Account will primarily focus on recent mechanistic work from 2017–2023.
1 Base Metal C–H Activation

2 Nickel-Catalyzed sp3 C–H activation

3 Differences between Ni and Pd

4 Mechanistic Considerations

5 Elementary Steps

6 Directed sp3 C–H Activation

7 Choice of Directing Group

8 Primary C–H Activation

9 Secondary C–H Activation

10 Tertiary C–H Activation

11 Conclusion and Outlook



Publication History

Received: 06 September 2023

Accepted after revision: 04 October 2023

Article published online:
24 November 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Rogge T, Kaplaneris N, Chatani N, Kim J, Chang S, Punji B, Schafer LL, Musaev DG, Wencel-Delord J, Roberts CA, Sarpong R, Wilson ZE, Brimble MA, Johansson MJ, Ackermann L. Nat. Rev. Methods Primers 2021; 1
    • 2a Gandeepan P, Müller T, Zell D, Cera G, Warratz S, Ackermann L. Chem. Rev. 2019; 119: 2192
    • 2b Docherty JH, Lister TM, McArthur G, Findlay MT, Domingo-Legarda P, Kenyon J, Choudhary S, Larrosa I. Chem. Rev. 2023; 123: 7692
  • 3 Hodges RJ, Garnett JL. J. Catal. 1969; 13: 83
  • 4 Goldshleger NF, Tyabin MB, Shilov AE, Shteinman AA. Russ. J. Phys. Chem. 1969; 43: 1222
  • 5 Dyker G. Angew. Chem., Int. Ed. Engl. 1992; 31: 1023
  • 6 Kleiman JP, Dubeck M. J. Am. Chem. Soc. 1963; 85: 1544
  • 7 Shiota H, Ano Y, Aihara Y, Fukumoto Y, Chatani N. J. Am. Chem. Soc. 2011; 133: 14952
  • 8 Aihara Y, Chatani N. J. Am. Chem. Soc. 2014; 136: 898
  • 9 Wu X, Zhao Y, Ge H. J. Am. Chem. Soc. 2014; 136: 1789
    • 11a Liu B, Romine AM, Rubel CZ, Engle KM, Shi B.-F. Chem. Rev. 2021; 121: 14957
    • 11b Chu JC. K, Rovis T. Angew. Chem. Int. Ed. 2018; 57: 62
    • 11c Khake SM, Chatani N. Trends Chem. 2019; 1: 524
    • 11d Khake SM, Chatani N. Chem 2020; 6: 1056
  • 12 Harry NA, Saranya S, Ujwaldev SM, Anilkumar G. Catal. Sci. Technol. 2019; 9: 1726
  • 14 Scerri E. J. Chem. Educ. 2008; 85: 585
    • 16a Gorelsky SI, Lapointe D, Fagnou K. J. Org. Chem. 2012; 77: 658
    • 16b Gorelsky SI, Lapointe D, Fagnou K. J. Am. Chem. Soc. 2008; 130: 10848
  • 18 Camasso NM, Canty AJ, Ariafard A, Sanford MS. Organometallics 2017; 36: 4382
  • 19 Poli R, Cacelli I. Eur. J. Inorg. Chem. 2005; 2324
  • 20 Bhatt V. In Essentials of Coordination Chemistry, 1st ed. Academic Press; Cambridge (MA, USA): 2015: 1-269
  • 21 Ting SI, Garakyaraghi S, Taliaferro CM, Shields BJ, Scholes GD, Castellano FN, Doyle AG. J. Am. Chem. Soc. 2020; 142: 5800
  • 22 Milbauer MW, Kampf JW, Sanford MS. J. Am. Chem. Soc. 2022; 144: 21030
    • 23a D’Accriscio F, Borja P, Saffon-Merceron N, Fustier-Boutignon M, Mézailles N, Nebra N. Angew. Chem. Int. Ed. 2017; 56: 12898
    • 23b Canty AJ. Acc. Chem. Res. 1992; 25: 83
    • 23c Stahl SS, Labinger JA, Bercaw JE. J. Am. Chem. Soc. 1996; 118: 5961
    • 23d Meucci EA, Nguyen SN, Camasso NM, Chong E, Ariafard A, Canty AJ, Sanford MS. J. Am. Chem. Soc. 2019; 141: 12872
    • 24a Dimitrov V, Linden A. Angew. Chem. Int. Ed. 2003; 42: 2631
    • 24b Fekl U, Kaminsky W, Goldberg KI. J. Am. Chem. Soc. 2001; 123: 6423
  • 25 Ferrando R, Jellinek J, Johnston RL. Chem. Rev. 2008; 108: 845
  • 26 Batsanov SS. Inorg. Mater. 2001; 37: 871
  • 27 Lin B.-L, Liu L, Fu Y, Luo S.-W, Chen Q, Guo Q.-X. Organometallics 2004; 23: 2114
  • 28 Uddin J, Morales CM, Maynard JH, Landis CR. Organometallics 2006; 25: 5566
  • 29 Simoes JA. M, Beauchamp JL. Chem. Rev. 1990; 90: 629
  • 30 He J, Wasa M, Chan KS. L, Shao Q, Yu J.-Q. Chem. Rev. 2017; 117: 8754
  • 31 Omer HM, Liu P. J. Am. Chem. Soc. 2017; 139: 9909
    • 32a Song W, Lackner S, Ackermann L. Angew. Chem. Int. Ed. 2014; 53: 2477
    • 32b Hachiya H, Hirano K, Satoh T, Miura M. Org. Lett. 2009; 11: 1737
    • 32c Hachiya H, Hirano K, Satoh T, Miura M. ChemCatChem 2010; 2: 1403
    • 32d Wang X, Xie P, Qiu R, Zhu L, Liu T, Li Y, Iwasaki T, Au C.-T, Xu X, Xia Y, Yin S.-F, Kambe N. Chem. Commun. 2017; 53: 8316
    • 32e Ye X, Petersen JL, Shi X. Chem. Commun. 2015; 51: 7863
    • 32f Wu X, Zhao Y, Ge H. Chem. Eur. J. 2014; 20: 9530
  • 33 Singh SK S, Sunoj RB. J. Org. Chem. 2017; 82: 9619
  • 34 Huo J, Fu Y, Tang MJ, Liu P, Dong G. J. Am. Chem. Soc. 2023; 145: 11005
    • 35a Iyanaga M, Aihara Y, Chatani N. J. Org. Chem. 2014; 79: 11933
    • 35b Liu Y.-H, Xia Y.-N, Shi B.-F. Chin. J. Chem. 2020; 38: 635
  • 36 Kim YB, Won J, Lee J, Kim J, Zhou B, Park J.-W, Baik M.-H, Chang S. ACS Catal. 2021; 11: 3067
  • 37 Desai LV, Stowers KJ, Sanford MS. J. Am. Chem. Soc. 2008; 130: 13285
    • 38a Roberts CC, Chong E, Kampf JW, Canty AJ, Ariafard A, Sanford MS. J. Am. Chem. Soc. 2019; 141: 19513
    • 38b Sahni P, Gupta R, Sharma S, Pal AK. Coord. Chem. Rev. 2023; 474: 214849
    • 38c Camasso NM, Sanford MS. Science 2015; 347: 1218
  • 39 Liu J, Johnson SA. Organometallics 2021; 40: 2970
  • 40 Beattie DD, Grunwald AC, Perse T, Schafer LL, Love JA. J. Am. Chem. Soc. 2018; 140: 12602
  • 41 Brookhart M, Green ML. H, Parkin G. Proc. Natl. Acad. Sci. U.S.A. 2007; 104: 6908
  • 42 Piszel PE, Orzolek BJ, Olszewski AK, Rotella ME, Spiewak AM, Kozlowski MC, Weix DJ. J. Am. Chem. Soc. 2023; 145: 8517
  • 43 Lin L, Spasyuk DM, Lalancette RA, Prokopchuk DE. J. Am. Chem. Soc. 2022; 144: 12632
  • 44 Davies DL, Macgregor SA, McMullin CL. Chem. Rev. 2017; 117: 8649
  • 45 Jutzi P, Müller C, Stammler A, Stammler H.-G. Organometallics 2000; 19: 1442
    • 46a Abdur-Rashid K, Fong TP, Greaves B, Gusev DG, Hinman JG, Landau SE, Lough AJ, Morris RH. J. Am. Chem. Soc. 2000; 122: 9155
    • 46b Kaupmees K, Järviste R, Leito I. Chem. Eur. J. 2016; 22: 17445
    • 46c Tshepelevitsh S, Kütt A, Lõkov M, Kaljurand I, Saame J, Heering A, Plieger PG, Vianello R, Leito I. Eur. J. Org. Chem. 2019; 6735
  • 47 Roy P, Bour JR, Kampf JW, Sanford MS. J. Am. Chem. Soc. 2019; 141: 17382
  • 48 Wang C, Zhang L, You J. Org. Lett. 2017; 19: 1690
    • 49a Lin C, Yu W, Yao J, Wang B, Liu Z, Zhang Y. Org. Lett. 2015; 17: 1340
    • 49b Yan S.-Y, Liu Y.-J, Liu B, Liu Y.-H, Zhang Z.-Z, Shi B.-F. Chem. Commun. 2015; 51: 7341
  • 50 Liu Y.-J, Zhang Z.-Z, Yan S.-Y, Liu Y.-H, Shi B.-F. Chem. Commun. 2015; 51: 7899
  • 51 Uemura T, Yamaguchi M, Chatani N. Angew. Chem. Int. Ed. 2016; 55: 3162
  • 52 Lin C, Chen Z, Zhang Y. Org. Lett. 2017; 19: 850
  • 53 Fitzgerald LS, O’Duill ML. Chem. Eur. J. 2021; 27: 8411
  • 54 Corbet M, De Campo F. Angew. Chem. Int. Ed. 2013; 52: 9896
  • 55 Wang Y.-X, Zhang F.-P, Chen H, Li Y, Li J.-F, Ye M. Angew. Chem. Int. Ed. 2022; 61: e202209625
    • 56a Lucas EL, Lam NY. S, Zhuang Z, Chan HS. S, Strassfeld DA, Yu J.-Q. Acc. Chem. Res. 2022; 55: 537
    • 56b Gandeepan P, Ackermann L. Chem 2018; 4: 199