Synlett 2024; 35(07): 747-752
DOI: 10.1055/s-0042-1751487
synpacts

Insights into the Regioselectivity of Metal-Catalyzed Aryne Reactions

Erin E. Plasek
,
Brylon N. Denman
,
The University of Minnesota is acknowledged for startup funds. We also acknowledge the National Institutes of Health (NIH) (R35GM146957) for funds. Instrumentation for the UMN Chemistry NMR facility was supported from a grant through the NIH (S10OD011952). E.E.P. was funded by the Newman and Lillian Bortnick fellowship and B.N.D was funded by the Robert and Jill DeMaster fellowship.


Abstract

The synthetic potential of unsymmetrically substituted aryne intermediates is significantly hindered by regioselectivity issues. Current methods for inducing regioselectivity all rely on substrate control and are focused on non-metallated arynes. Before our initial disclosure, there was no systematic study regarding the regioselectivity of metal-catalyzed aryne reactions. By exploiting ligand control, we have induced regioselectivity in a palladium-catalyzed aryne annulation to form phenanthridinones (up to 9:91 r.r.). Through this study we have investigated: ligand effects, influence of steric perturbation, and the impact of the aryne precursor.

1 Introduction

2 Inducing Regioselectivity via Ligand Control

3 A Comparison of o-Borylaryl Triflate Aryne Precursors to Kobayashi Aryne Precursors

4 Conclusion



Publikationsverlauf

Eingereicht: 01. Juli 2023

Angenommen nach Revision: 31. Juli 2023

Artikel online veröffentlicht:
18. September 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Stoermer R, Kahlert B. Ber. Dtsch. Chem. Ges. 1902; 35: 1633
  • 2 Goetz AE, Bronner SM, Cisneros JD, Melamed JM, Paton RS, Houk KN, Garg NK. Angew. Chem. Int. Ed. 2012; 51: 2758
  • 3 Tadross PM, Stoltz BM. Chem. Rev. 2012; 112: 3550
  • 4 Anthony SM, Wonilowicz LG, McVeigh MS, Garg NK. JACS Au 2021; 1: 897
  • 5 Spence KA, Chari JV, Niro MD, Susick RB, Ukwitegetse N, Djurovich PI, Thompson ME, Garg NK. Chem. Sci. 2022; 13: 5884
  • 6 Chari JV, Spence KA, Susick RB, Garg NK. Nat. Commun. 2021; 12: 3706
  • 7 Shi J, Li L, Li Y. Chem. Rev. 2021; 121: 3892
  • 8 García-López J.-A, Greaney MF. Chem. Soc. Rev. 2016; 45: 6766
  • 9 Berthelot-Bréhier A, Panossian A, Colobert F, Leroux FR. Org. Chem. Front. 2015; 2: 634
  • 10 Shi F, Waldo JP, Chen Y, Larock RC. Org. Lett. 2008; 10: 2409
  • 11 Dubrovskiy AV, Markina NA, Larock RC. Org. Biomol. Chem. 2012; 11: 191
  • 12 Bhattacharjee S, Guin A, Gaykar RN, Biju AT. Org. Lett. 2020; 22: 9097
  • 13 Seo JH, Ko HM. Tetrahedron Lett. 2018; 59: 671
  • 14 May C, Moody CJ. J. Chem. Soc., Chem. Commun. 1984; 926
  • 15 Gribble GW, Saulnier MG, Sibi MP, Obaza-Nutaitis JA. J. Org. Chem. 1984; 49: 4518
  • 16 Goetz AE, Garg NK. J. Org. Chem. 2014; 79: 846
  • 17 Medina JM, Mackey JL, Garg NK, Houk KN. J. Am. Chem. Soc. 2014; 136: 15798
  • 18 Kanemoto K, Sakata Y, Hosoya T, Yoshida S. Chem. Lett. 2020; 49: 593
  • 19 Goetz AE, Garg NK. Nat. Chem. 2013; 5: 54
  • 20 Sumida Y, Sumida T, Hashizume D, Hosoya T. Org. Lett. 2016; 18: 5600
  • 21 Huang X, Sha F, Tong J. Adv. Synth. Catal. 2010; 352: 379
  • 22 Jeganmohan M, Bhuvaneswari S, Cheng C.-H. Angew. Chem. Int. Ed. 2009; 48: 391
  • 23 Henderson JL, Edwards AS, Greaney MF. Org. Lett. 2007; 9: 5589
  • 24 Bhuvaneswari S, Jeganmohan M, Cheng C.-H. Org. Lett. 2006; 8: 5581
  • 25 Chatani N, Kamitani A, Oshita M, Fukumoto Y, Murai S. J. Am. Chem. Soc. 2001; 123: 12686
  • 26 Feng M, Tang B, Xu H.-X, Jiang X. Org. Lett. 2016; 18: 4352
  • 27 Xie C, Liu L, Zhang Y, Xu P. Org. Lett. 2008; 10: 2393
  • 28 Bhuvaneswari S, Jeganmohan M, Cheng C.-H. Chem. Commun. 2008; 5013
  • 29 Peng X, Ma C, Tung C.-H, Xu Z. Org. Lett. 2016; 18: 4154
  • 30 Zeng Y, Li G, Hu J. Angew. Chem. Int. Ed. 2015; 54: 10773
  • 31 Reiner BR, Tonks IA. Inorg. Chem. 2019; 58: 10508
  • 32 Jayanth TT, Jeganmohan M, Cheng C.-H. Org. Lett. 2005; 7: 2921
  • 33 Jayanth TT, Cheng C.-H. Angew. Chem. Int. Ed. 2007; 46: 5921
  • 34 Qiu Z, Xie Z. Angew. Chem. Int. Ed. 2009; 48: 5729
  • 35 Lin Y, Wu L, Huang X. Eur. J. Org. Chem. 2011; 2993
  • 36 Yang Y, Huang H, Wu L, Liang Y. Org. Biomol. Chem. 2014; 12: 5351
  • 37 Li R.-J, Pi S.-F, Liang Y, Wang Z.-Q, Song R.-J, Chen G.-X, Li J.-H. Chem. Commun. 2009; 46: 8183
  • 38 Pi S.-F, Yang X.-H, Huang X.-C, Liang Y, Yang G.-N, Zhang X.-H, Li J.-H. J. Org. Chem. 2010; 75: 3484
  • 39 Pi S.-F, Tang B.-X, Li J.-H, Liu Y.-L, Liang Y. Org. Lett. 2009; 11: 2309
  • 40 Yao T, He D. Org. Lett. 2017; 19: 842
  • 41 Liu Z, Larock RC. Angew. Chem. Int. Ed. 2007; 46: 2535
  • 42 Yoshida H, Honda Y, Shirakawa E, Hiyama T. Chem. Commun. 2001; 1880
  • 43 Tang C.-Y, Wu X.-Y, Sha F, Zhang F, Li H. Tetrahedron Lett. 2014; 55: 1036
  • 44 Garve LK. B, Werz DB. Org. Lett. 2015; 17: 596
  • 45 Zeng Y, Hu J. Org. Lett. 2016; 18: 856
  • 46 Zeng Y, Zhang L, Zhao Y, Ni C, Zhao J, Hu J. J. Am. Chem. Soc. 2013; 135: 2955
  • 47 Jeganmohan M, Cheng C.-H. Synthesis 2005; 1693
  • 48 Henderson JL, Edwards AS, Greaney MF. J. Am. Chem. Soc. 2006; 128: 7426
  • 49 Helmchen G, Pfaltz A. Acc. Chem. Res. 2000; 33: 336
  • 50 Behenna DC, Stoltz BM. J. Am. Chem. Soc. 2004; 126: 15044
  • 51 Margalef J, Biosca M, de la Cruz Sánchez P, Faiges J, Pàmies O, Diéguez M. Coord. Chem. Rev. 2021; 446: 214120
  • 52 Connon R, Roche B, Rokade BV, Guiry PJ. Chem. Rev. 2021; 121: 6373
  • 53 Blackham EE, Booker-Milburn KI. Angew. Chem. Int. Ed. 2017; 56: 6613
  • 54 Sun Z.-M, Zhang J, Zhao P. Org. Lett. 2010; 12: 992
  • 55 Coeffard V, Guiry PJ. Curr. Org. Chem. 2010; 14: 212
  • 56 Endo K, Grubbs RH. J. Am. Chem. Soc. 2011; 133: 8525
  • 57 Paradiso V, Costabile C, Grisi F. Beilstein J. Org. Chem. 2018; 14: 3122
  • 58 Lu C, Dubrovskiy AV, Larock RC. J. Org. Chem. 2012; 77: 8648
  • 59 Aleti RR, Festa AA, Voskressensky LG, Van der Eycken EV. Molecules 2021; 26: 5560
  • 60 Denman BN, Plasek EE, Roberts CC. Organometallics 2023; 42: 859
  • 61 Jover J, Cirera J. Dalton Trans. 2019; 15036
  • 62 Tolman CA. Chem. Rev. 1977; 77: 313
  • 63 Coll DS, Vidal AB, Rodríguez JA, Ocando-Mavárez E, Añez R, Sierraalta A. Inorg. Chim. Acta 2015; 436: 163
  • 64 Sigman MS, Miller JJ. J. Org. Chem. 2009; 74: 7633
  • 65 Zahrt AF, Athavale SV, Denmark SE. Chem. Rev. 2020; 120: 1620
  • 66 Guan Y, Buivydas TA, Lalisse RF, Attard JW, Ali R, Stern C, Hadad CM, Mattson AE. ACS Catal. 2021; 11: 6325
  • 67 Saint-Denis TG, Lam NY. S, Chekshin N, Richardson PF, Chen JS, Elleraas J, Hesp KD, Schmitt DC, Lian Y, Huh CW, Yu J.-Q. ACS Catal. 2021; 11: 9738
  • 68 Mantilli L, Gérard D, Torche S, Besnard C, Mazet C. Chem. Eur. J. 2010; 16: 12736
  • 69 García-López J.-A, Greaney MF. Org. Lett. 2014; 16: 2338