Synthesis 2023; 55(20): 3315-3328
DOI: 10.1055/s-0042-1751483
paper

Synthesis of N-Propargyl Pyrrolylamides and Theoretical Study of Pyrrolylimide Reduction by NaBH4

Sinan Basceken
Financial support from Türkiye Bilimsel ve Teknolojik Araştirma Kurumu­ (the Scientific and Technological Research Council of Turkey; TUBITAK; Grant No. 119Z707) and the Scientific Research Department of Hitit University (BAP, Project No. FEF.19001.21.007) is gratefully acknowledged.


Abstract

This study is divided into two parts: experimental and theoretical. In the experimental part, N-propargyl-substituted pyrrolylamide derivatives are synthesized in five steps starting from pyrrole. The main features of this procedure are (i) the synthesis of 2- and 3-nitropyrrole, (ii) the introduction of a propargyl group on the nitrogen atom of the pyrrole, (iii) coupling of various substituents with the alkyne functionality by the Sonogashira reaction, (iv) synthesis of pyrrolylimides by a tin-catalyzed reaction with phthalic anhydride, and, finally, (v) reduction of pyrrolylimides with sodium borohydride (NaBH4) in the presence of water. The theoretical part concerns the reduction mechanism of the pyrrolylimide by NaBH4. The hybrid functional B3LYP in density functional theory is used to determine and discuss the energetics of the compounds.

Supporting Information



Publication History

Received: 22 February 2023

Accepted after revision: 11 July 2023

Article published online:
31 August 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Deng X, Mani NS. J. Org. Chem. 2008; 73: 2412
    • 1b Kumar V, Kaur KT, Gupta GK, Sharma AK. Eur. J. Med. Chem. 2013; 69: 735
    • 1c Li JJ. Heterocyclic Chemistry in Drug Discovery. Wiley; Hoboken: 2013: 198
    • 1d Nikishkin NI, Huskens J, Verboom W. Org. Biomol. Chem. 2013; 11: 3583
    • 1e He Y, Lin M, Li Z, Liang X, Li G, Antilla JC. Org. Lett. 2011; 13: 4490
    • 1f Manlove A, Groziak MP. Prog. Heterocycl. Chem. 2009; 21: 375
    • 1g Basceken S, Balci M. J. Org. Chem. 2015; 80: 3806
    • 1h Menges N, Sari O, Abdullayev Y, Erdem SS, Balci M. J. Org. Chem. 2013; 78: 5184
    • 1i Guven S, Ozer MS, Kaya S, Menges N, Balci M. Org. Lett. 2015; 17: 2660
    • 2a McCrindle, B. W.; Ose, L.; Marais, A. D. The Journal of Pediatrics. 143, 1, 74.
    • 2b Marais AD, Firth JC, Bateman ME, Byrnes P, Martens C, Mountney J. Arterioscler. Thromb. Vasc. Biol. 1997; 17: 1527
    • 2c Wilson PW. F, D’Agostino RB. D, Levy D, Belanger AM, Silbershatz H, Kannel WB. Circulation 1998; 97: 1837
    • 2d Jones P, Kafonek S, Laurora I, Hunninghake D. Am. J. Cardiol. 1998; 81: 582
    • 3a Black BC, Hollingworth RM, Ahammadsahib KI, Kukel CD, Donovan S. Pestic. Biochem. Physiol. 1994; 50: 115
    • 3b Tungu PK, Michael E, Sudi W, Kisinza WW, Rowland M. Malar. J. 2021; 20: 180
    • 4a Cordrey LJ. J. Am. Geriatr. Soc. 1976; 24: 440
    • 4b Stacher G, Bauer P, Ehn I, Schreiber E. Int. J. Clin. Pharmacol. Biopharm. 1979; 17: 250
    • 5a Morgan KJ, Morrey DP. Tetrahedron 1966; 22: 57
    • 5b Rinkes IJ. Recl. Trav. Chim. Pays-Bas 1934; 53: 1167
    • 5c Anderson HJ. Can. J. Chem. 1957; 35: 23
  • 6 Fu L, Gribble GW. Synthesis 2008; 788
    • 7a Finlay AC, Hochstein FA, Sobin BA, Murphy FX. J. Am. Chem. Soc. 1951; 73: 341
    • 7b Kopka ML, Yoon C, Goodsell D, Pjura P, Dickerson RE. J. Mol. Biol. 1985; 183: 553
    • 7c Zimmer C, Luck G, Thrum H, Pitra C. Eur. J. Biochem. 1972; 26: 81
  • 8 Sonogashira K, Tohda Y, Hagihara N. Tetrahedron Lett. 1975; 16: 4467
    • 9a De Rosa M, Issac RP, Houghton G. Tetrahedron Lett. 1995; 36: 9261
    • 9b Osby JO, Martin MG, Ganem B. Tetrahedron Lett. 1984; 25: 2093
    • 10a De Rosa M, Issac RP, Marquez M, Orozco M, Luque FJ, Timken MD. J. Chem. Soc., Perkin Trans. 2 1999; 1433
    • 10b De Rosa M, Stepani N, Cole T, Fried J, Huang-Pang L, Peacock L, Pro M. Tetrahedron Lett. 2005; 46: 5715
    • 10c De Rosa M, Sellitto L, Issac RP, Ralph J, Timken MD. J. Chem. Res., Synop. 1999; 262
    • 11a Kohn W, Sham L. Phys. Rev. 1965; 140: A1133
    • 11b Parr RG, Yang W. Ann. Rev. Phys. Chem. 1995; 46: 701
    • 11c Kohn W, Becke AD, Parr RG. J. Phys. Chem. 1996; 100: 12974
  • 12 Chai JD, Gordon MH. J. Chem. Phys. 2009; 131: 174105
  • 13 Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ. Gaussian 09, Revision E.01. Gaussian Inc. Wallingford, 2009;
  • 14 Fukui K. Acc. Chem. Res. 1981; 14: 363
  • 15 Dennington R, Keith TA, Millam JM. GaussView, Version 6. Semichem Inc; Shawnee Mission: 2016
  • 16 Legault CY. CYLview 1.0b. Université de Sherbrooke; Quebec: 2009
    • 17a Eisenstein O. J. Org. Chem. 1982; 47: 2886
    • 17b Song P, Ruan M, Sun X, Zhang Y, Xu W. J. Phys. Chem. B. 2014; 118: 10224
    • 17c Patel P, Lingayat S, Gulvi N, Badani P. Chem. Phys. 2018; 504: 13