Subscribe to RSS
DOI: 10.1055/s-0042-119298
Brauchen wir noch Elektrophysiologie in der Augenheilkunde? Indikationsstellung für elektrophysiologische Untersuchungen
Do We Still Need Electrophysiology in Ophthalmology?Publication History
eingereicht 13 September 2016
akzeptiert 09 October 2016
Publication Date:
16 December 2016 (online)
Zusammenfassung
Als elektrophysiologische Untersuchungsmethoden in der Augenheilkunde stehen das Ganzfeld-Elektroretinogramm (ERG) zur Untersuchung der äußeren und mittleren Netzhautschichten, das Muster-ERG (PERG) zur Untersuchung der Ganglienzellfunktion, das Elektrookulogramm (EOG) zur Untersuchung der Funktion des retinalen Pigmentepithels sowie visuell evozierte Potenziale (VEP) zur Prüfung der gesamten Sehbahn einschließlich des N. opticus und des primären visuellen Kortexes zur Verfügung. ERG und VEP können auch multifokal zur Testung innerhalb umschriebener Gesichtsfeldareale eingesetzt werden. Die technische Entwicklung bildgebender Verfahren, insbesondere der optischen Kohärenztomografie (OCT) und der Fundusautofluoreszenz (FAF) hat es möglich gemacht, feine morphologische Veränderungen im Bereich der Netzhaut mit hoher räumlicher Auflösung zu erfassen. Dadurch lassen sich vielfach typische retinale Erkrankungen frühzeitig erkennen, deren Diagnose bisher den Einsatz elektrophysiologischer Untersuchungen erforderte (z. B. X-chromosomale Retinoschisis, Morbus Stargardt, vitelliforme Makuladystrophie). Die OCT ist elektrophysiologischen Methoden bei der Quantifizierung einer Optikusatrophie deutlich überlegen. Mithilfe neu entwickelter optischer Verfahren gelingt es zunehmend besser, auch periphere Netzhautstrukturen (Weitwinkeloptik) und feine Strukturen bis zur Photorezeptorebene (adaptive Optik) darzustellen. Allerdings erlaubt es bisher nur die elektrophysiologische Diagnostik, zentrale Netzhauterkrankungen (z. B. Makuladystrophie) von generalisierten Netzhauterkrankungen (z. B. Zapfendystrophie, Retinitis pigmentosa) sicher abzugrenzen und Funktionsstörungen bei generalisierten Netzhauterkrankungen (z. B. Enhanced-S-Cone-Syndrom, kongenitale stationäre Nachtblindheit, Achromatopsie) zu unterscheiden.
Abstract
Electrophysiological methods in clinical ophthalmology include the full-field electroretinogram (ERG) for assessment of outer and middle retinal layers, pattern ERG (PERG) for assessment of ganglion cell function, the electrooculogram (EOG) for assessment of retinal pigment epithelium function, as well as visual evoked potentials (VEP) for assessment of the visual pathway, including the optic nerve and visual cortex. Multifocal recording techniques for ERG and VEP are used for tests within selected areas of the visual field. Technical progress in ocular imaging, especially optical coherence tomography (OCT) and fundus autofluorescence (FAF), allows high-resolution imaging of subtle morphological changes of the retina and posterior fundus. Typical retinal diseases may then be diagnosed at an early stage, without conventional electrophysiological investigations (e.g. x-linked retinoschisis, Stargardt disease, vitelliform macular dystrophy). OCT outclasses electrophysiological methods in the quantification of optic atrophies. With newly developed optic techniques, peripheral retinal structures (wide angle optics) and subtle structures up to the photoreceptor level (adaptive optics) can be imaged with increasing quality. However, differentiation of central retinal disorders (e.g. macular dystrophy) from generalised retinal diseases requires electrophysiological diagnostic testing. The same applies to discrimination between different functional disorders in generalised retinal diseases (e.g. enhanced S-cone syndrome, congenital stationary night blindness, achromatopsia).
-
Literatur
- 1 Kahn RH, Löwenstein A. Das Elektroretinogramm. Graefes Arch Clin Exp Ophthalmol 1924; 114: 304-331
- 2 Adrian ED, Matthews BHC. The Berger rhythm: potential changes from the occipital lobes in man. Brain 1934; 57: 355-385
- 3 Kris C. Corneo-fundal potential variations during light and dark adaptation. Nature 1958; 182: 1027-1028
- 4 Bach M, Kellner U. Elektrophysiologische Diagnostik in der Ophthalmologie. Ophthalmologe 2000; 97: 898-920
- 5 Von Rückmann A, Fitzke FW, Bird AC. Distribution of fundus autofluorescence with a scanning laser ophthalmoscope. Br J Ophthalmol 1995; 79: 407-412
- 6 Huang D, Swanson EA, Lin CP et al. Optical coherence tomography. Science 1991; 254: 1178-1181
- 7 Arden GB, Constable PA. The electro-oculogram. Prog Retin Eye Res 2006; 25: 207-248
- 8 Boon CJ, Klevering BJ, Leroy BP et al. The spectrum of ocular phenotypes caused by mutations in the BEST1 gene. Prog Retin Eye Res 2009; 28: 187-205
- 9 Heckenlively JR, Arden GB eds. Principles and Practice of Clinical Electrophysiology of Vision. 2nd. ed. Cambridge, Mass.: MIT Press; 2006
- 10 Schechner R, Miller B, Merksamer E et al. A long term follow up of ocular siderosis: quantitative assessment of the electroretinogram. Doc Ophthalmol 1990; 76: 231-240
- 11 Holder GE. Pattern electroretinography (PERG) and an integrated approach to visual pathway diagnosis. Prog Retin Eye Res 2001; 20: 531-561
- 12 Bach M, Hoffmann MB. Update on the pattern electroretinogram in glaucoma. Optom Vis Sci 2008; 85: 386-395
- 13 Odom JV, Bach M, Brigell M et al. ISCEV standard for clinical visual evoked potentials: (2016 update). Doc Ophthalmol 2016; 133: 1-9
- 14 Hood DC, Odel JG, Winn BJ. The multifocal visual evoked potential. J Neuroophthalmol 2003; 23: 279-289
- 15 Horn FK, Kaltwasser C, Jünemann AG et al. Objective perimetry using a four-channel multifocal VEP system: correlation with conventional perimetry and thickness of the retinal nerve fibre layer. Br J Ophthalmol 2012; 96: 554-559
- 16 Van Velthoven ME, Faber DJ, Verbraak FD et al. Recent developments in optical coherence tomography for imaging the retina. Prog Retin Eye Res 2007; 26: 57-77
- 17 Dale EA, Hood DC, Greenstein VC et al. A comparison of multifocal ERG and frequency domain OCT changes in patients with abnormalities of the retina. Doc Ophthalmol 2010; 120: 175-186
- 18 Gregori NZ, Berrocal AM, Gregori G et al. Macular spectral-domain optical coherence tomography in patients with X linked retinoschisis. Br J Ophthalmol 2009; 93: 373-378
- 19 Cho SC, Woo SJ, Park KH et al. Morphologic characteristics of the outer retina in cone dystrophy on spectral-domain optical coherence tomography. Korean J Ophthalmol 2013; 27: 19-27
- 20 Ahn SJ, Ahn J, Park KH et al. Multimodal imaging of occult macular dystrophy. JAMA Ophthalmol 2013; 131: 880-890
- 21 Miyake Y, Tsunoda K. Occult macular dystrophy. Jpn J Ophthalmol 2015; 59: 71-80
- 22 Chen CJ, Scholl HP, Birch DG et al. Characterizing the phenotype and genotype of a family with occult macular dystrophy. Arch Ophthalmol 2012; 130: 1554-1559
- 23 Gomes NL, Greenstein VC, Carlson JN et al. A comparison of fundus autofluorescence and retinal structure in patients with Stargardt disease. Invest Ophthalmol Vis Sci 2009; 50: 3953-3959
- 24 Strauss RW, Muñoz B, Wolfson Y et al. Assessment of estimated retinal atrophy progression in Stargardt macular dystrophy using spectral-domain optical coherence tomography. Br J Ophthalmol 2016; 100: 956-962
- 25 Querques G, Regenbogen M, Quijano C et al. High-definition optical coherence tomography features in vitelliform macular dystrophy. Am J Ophthalmol 2008; 146: 501-507
- 26 Battu R, Khanna A, Hegde B et al. Correlation of structure and function of the macula in patients with retinitis pigmentosa. Eye (Lond) 2015; 29: 895-901
- 27 Liu G, Liu X, Li H et al. Optical coherence tomographic analysis of retina in retinitis pigmentosa patients. Ophthalmic Res 2016; 56: 111-122
- 28 Aboshiha J, Dubis AM, Cowing J et al. A prospective longitudinal study of retinal structure and function in achromatopsia. Invest Ophthalmol Vis Sci 2014; 55: 5733-5743
- 29 Sundaram V, Wilde C, Aboshiha J et al. Retinal structure and function in achromatopsia: implications for gene therapy. Ophthalmology 2014; 121: 234-245
- 30 Chen E, Brown DM, Benz MS et al. Spectral domain optical coherence tomography as an effective screening test for hydroxychloroquine retinopathy (the “flying saucer” sign). Clin Ophthalmol 2010; 4: 1151-1158
- 31 Marmor MF, Melles RB. Disparity between visual fields and optical coherence tomography in hydroxychloroquine retinopathy. Ophthalmology 2014; 121: 1257-1262
- 32 Unterlauft J, Tegetmeyer H. Papillendiagnostik mit der optischen Kohärenztomografie. Klin Monatsbl Augenheilkd 2016; DOI: 10.1055/s-0042-116073.
- 33 Ito Y, Nakamura M, Yamakoshi T et al. Reduction of inner retinal thickness in patients with autosomal dominant optic atrophy associated with OPA1 mutations. Invest Ophthalmol Vis Sci 2007; 48: 4079-4086
- 34 Schmitz-Valckenberg S. Fundusautofluoreszenz-Imaging. Klin Monatsbl Augenheilkd 2015; 232: 1050-1053
- 35 Greenstein VC, Schuman AD, Lee W et al. Near-infrared autofluorescence: its relationship to short-wavelength autofluorescence and optical coherence tomography in recessive Stargardt disease. Invest Ophthalmol Vis Sci 2015; 56: 3226-3234
- 36 Sparrow JR, Marsiglia M, Allikmets R et al. Flecks in recessive Stargardt disease: short-wavelength autofluorescence, near-infrared autofluorescence, and optical coherence tomography. Invest Ophthalmol Vis Sci 2015; 56: 5029-5039
- 37 Lima LH, Burke T, Greenstein VC et al. Progressive constriction of the hyperautofluorescent ring in retinitis pigmentosa. Am J Ophthalmol 2012; 153: 718-727 727–2
- 38 Duncker T, Tabacaru MR, Lee W et al. Comparison of near-infrared and short-wavelength autofluorescence in retinitis pigmentosa. Invest Ophthalmol Vis Sci 2013; 54: 585-591
- 39 Duncker T, Greenberg JP, Ramachandran R et al. Quantitative fundus autofluorescence and optical coherence tomography in Best vitelliform macular dystrophy. Invest Ophthalmol Vis Sci 2014; 55: 1471-1482
- 40 Marmor MF. Comparison of screening procedures in hydroxychloroquine toxicity. Arch Ophthalmol 2012; 130: 461-469
- 41 Kernt M, Kampik A. Imaging of the peripheral retina. Oman J Ophthalmol 2013; 6: S32
- 42 McNabb RP, Grewal DS, Mehta R et al. Wide field of view swept-source optical coherence tomography for peripheral retinal disease. Br J Ophthalmol 2016; 100: 1377-1382
- 43 Nagiel A, Lalane RA, Sadda SR et al. Ultra-widefield fundus imaging: a review of clinical applications and future trends. Retina 2016; 36: 660-678
- 44 Oishi M, Oishi A, Ogino K et al. Wide-field fundus autofluorescence abnormalities and visual function in patients with cone and cone-rod dystrophies. Invest Ophthalmol Vis Sci 2014; 55: 3572-3577
- 45 Ogino K, Oishi M, Oishi A et al. Radial fundus autofluorescence in the periphery in patients with X-linked retinitis pigmentosa. Clin Ophthalmol 2015; 9: 1467-1474
- 46 Roorda A, Duncan JL. Adaptive optics ophthalmoscopy. Annu Rev Vis Sci 2015; 1: 19-50
- 47 Felberer F, Kroisamer JS, Baumann B et al. Adaptive optics SLO/OCT for 3D imaging of human photoreceptors in vivo. Biomed Opt Express 2014; 5: 439-456
- 48 Jonnal RS, Kocaoglu OP, Zawadzki RJ et al. A review of adaptive optics optical coherence tomography: technical advances, scientific applications, and the future. Invest Ophthalmol Vis Sci 2016; 57: 51-68
- 49 Song H, Rossi EA, Latchney L et al. Cone and rod loss in stargardt disease revealed by adaptive optics scanning light ophthalmoscopy. JAMA Ophthalmol 2015; 133: 1198-1203
- 50 Tojo N, Nakamura T, Fuchizawa C et al. Adaptive optics fundus images of cone photoreceptors in the macula of patients with retinitis pigmentosa. Clin Ophthalmol 2013; 7: 203-210
- 51 Nakanishi A, Ueno S, Kawano K et al. Pathologic changes of cone photoreceptors in eyes with occult macular dystrophy. Invest Ophthalmol Vis Sci 2015; 56: 7243-7249
- 52 Dubis AM, Cooper RF, Aboshiha J et al. Genotype-dependent variability in residual cone structure in achromatopsia: toward developing metrics for assessing cone health. Invest Ophthalmol Vis Sci 2014; 55: 7303-7311
- 53 Faure C, Gocho K, Le Mer Y et al. Functional and high resolution retinal imaging assessment in a case of ocular siderosis. Doc Ophthalmol 2014; 128: 69-75
- 54 Sustar M, Perovšek D, Cima I et al. Electroretinography and optical coherence tomography reveal abnormal post-photoreceptoral activity and altered retinal lamination in patients with enhanced S-cone syndrome. Doc Ophthalmol 2015; 130: 165-177