Semin Musculoskelet Radiol 2022; 26(03): 314-328
DOI: 10.1055/s-0041-1740381
Review Article

Lumbar Spine Posttherapeutic Imaging

1   Department of Musculoskeletal Radiology, Hôpital Cochin, AP-HP Centre, Université de Paris, Paris, France
2   Department of Radiology, Hôpital Européen Georges-Pompidou, AP-HP Centre, Université de Paris, Paris, France
,
Emmanuelle Ferrero
3   Department of Orthopaedic Surgery, Hôpital Européen Georges-Pompidou, AP-HP Centre, Université de Paris, Paris, France
,
Robert Burns
1   Department of Musculoskeletal Radiology, Hôpital Cochin, AP-HP Centre, Université de Paris, Paris, France
,
Pierre Guigui
3   Department of Orthopaedic Surgery, Hôpital Européen Georges-Pompidou, AP-HP Centre, Université de Paris, Paris, France
,
Olivier Clement
2   Department of Radiology, Hôpital Européen Georges-Pompidou, AP-HP Centre, Université de Paris, Paris, France
,
Antoine Feydy
1   Department of Musculoskeletal Radiology, Hôpital Cochin, AP-HP Centre, Université de Paris, Paris, France
› Institutsangaben

Abstract

Management of patients after lumbar spine surgery or interventional radiology can be complex, and postoperative imaging patterns are often poorly understood by nonspecialized radiologists. This article focuses on postoperative imaging features of the lumbar spine in five clinical settings (with corresponding interventions): vertebral osteoporotic fractures (percutaneous vertebroplasty and vertebral augmentation), lumbar disk herniation (surgical diskectomy and percutaneous interventional radiology), lumbar spinal stenosis (surgical decompression), lumbar spondylolisthesis (surgical decompression and fusion), and degenerative scoliosis (techniques of osteotomies).

For each intervention, we discuss imaging indications, depending if the patient is asymptomatic or if there are suspected complications, describe normal and pathologic imaging features, and present key points.



Publikationsverlauf

Artikel online veröffentlicht:
02. Juni 2022

© 2022. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Manz D, Georgy M, Beall DP, Baroud G, Georgy BA, Muto M. Vertebral augmentation with spinal implants: third-generation vertebroplasty. Neuroradiology 2020; 62 (12) 1607-1615
  • 2 Filippiadis DK, Marcia S, Masala S, Deschamps F, Kelekis A. Percutaneous vertebroplasty and kyphoplasty: current status, new developments and old controversies. Cardiovasc Intervent Radiol 2017; 40 (12) 1815-1823
  • 3 Tsoumakidou G, Too CW, Koch G. et al. CIRSE guidelines on percutaneous vertebral augmentation. Cardiovasc Intervent Radiol 2017; 40 (03) 331-342
  • 4 Kathuria S. Post-vertebral augmentation spine imaging. Neuroimaging Clin N Am 2014; 24 (02) 337-347
  • 5 Fossaceca R, Di Terlizzi M, Stecco A. et al. MRI post-vertebroplasty. Radiol Med (Torino) 2007; 112 (02) 185-194
  • 6 Tanigawa N, Komemushi A, Kariya S. et al. Relationship between cement distribution pattern and new compression fracture after percutaneous vertebroplasty. AJR Am J Roentgenol 2007; 189 (06) W348-W352
  • 7 Voormolen MHJ, van Rooij WJ, van der Graaf Y. et al. Bone marrow edema in osteoporotic vertebral compression fractures after percutaneous vertebroplasty and relation with clinical outcome. AJNR Am J Neuroradiol 2006; 27 (05) 983-988
  • 8 Togawa D, Kovacic JJ, Bauer TW, Reinhardt MK, Brodke DS, Lieberman IH. Radiographic and histologic findings of vertebral augmentation using polymethylmethacrylate in the primate spine: percutaneous vertebroplasty versus kyphoplasty. Spine 2006; 31 (01) E4-E10
  • 9 Baroud G, Swanson T, Steffen T. Setting properties of four acrylic and two calcium-phosphate cements used in vertebroplasty. J Long Term Eff Med Implants 2006; 16 (01) 51-59
  • 10 Deramond H, Wright NT, Belkoff SM. Temperature elevation caused by bone cement polymerization during vertebroplasty. Bone 1999; 25 (2, Suppl): 17S-21S
  • 11 Fechtenbaum J, Etcheto A, Kolta S, Feydy A, Roux C, Briot K. Sagittal balance of the spine in patients with osteoporotic vertebral fractures. Osteoporos Int 2016; 27 (02) 559-567
  • 12 Roux C, Fechtenbaum J, Kolta S, Said-Nahal R, Briot K, Benhamou C-L. Prospective assessment of thoracic kyphosis in postmenopausal women with osteoporosis. J Bone Miner Res 2010; 25 (02) 362-368
  • 13 Murphy KJ, Deramond H. Percutaneous vertebroplasty in benign and malignant disease. Neuroimaging Clin N Am 2000; 10 (03) 535-545
  • 14 Butscheidt S, Rolvien T, Ritter J. et al. Pulmonary cement embolism is not associated with the cause of death in a post-mortem cohort of cement-augmented interventions in the spine. Eur Spine J 2018; 27 (10) 2593-2601
  • 15 Cotten A, Dewatre F, Cortet B. et al. Percutaneous vertebroplasty for osteolytic metastases and myeloma: effects of the percentage of lesion filling and the leakage of methyl methacrylate at clinical follow-up. Radiology 1996; 200 (02) 525-530
  • 16 Wang LJ, Yang HL, Shi YX, Jiang WM, Chen L. Pulmonary cement embolism associated with percutaneous vertebroplasty or kyphoplasty: a systematic review. Orthop Surg 2012; 4 (03) 182-189
  • 17 Georgy BA. Clinical experience with high-viscosity cements for percutaneous vertebral body augmentation: occurrence, degree, and location of cement leakage compared with kyphoplasty. AJNR Am J Neuroradiol 2010; 31 (03) 504-508
  • 18 Venmans A, Klazen CAH, Lohle PNM. et al. Percutaneous vertebroplasty and pulmonary cement embolism: results from VERTOS II. AJNR Am J Neuroradiol 2010; 31 (08) 1451-1453
  • 19 Venmans A, Lohle PNM, van Rooij WJ, Verhaar HJJ, Mali WP. Frequency and outcome of pulmonary polymethylmethacrylate embolism during percutaneous vertebroplasty. AJNR Am J Neuroradiol 2008; 29 (10) 1983-1985
  • 20 Krueger A, Bliemel C, Zettl R, Ruchholtz S. Management of pulmonary cement embolism after percutaneous vertebroplasty and kyphoplasty: a systematic review of the literature. Eur Spine J 2009; 18 (09) 1257-1265
  • 21 Trout AT, Kallmes DF, Kaufmann TJ. New fractures after vertebroplasty: adjacent fractures occur significantly sooner. AJNR Am J Neuroradiol 2006; 27 (01) 217-223
  • 22 Klazen CAH, Venmans A, de Vries J. et al. Percutaneous vertebroplasty is not a risk factor for new osteoporotic compression fractures: results from VERTOS II. AJNR Am J Neuroradiol 2010; 31 (08) 1447-1450
  • 23 Firanescu CE, de Vries J, Lodder P. et al. Percutaneous vertebroplasty is no risk factor for new vertebral fractures and protects against further height loss (VERTOS IV). Cardiovasc Intervent Radiol 2019; 42 (07) 991-1000
  • 24 Chen L-H, Hsieh M-K, Liao J-C. et al. Repeated percutaneous vertebroplasty for refracture of cemented vertebrae. Arch Orthop Trauma Surg 2011; 131 (07) 927-933
  • 25 Kim ES, Oladunjoye AO, Li JA, Kim KD. Spontaneous regression of herniated lumbar discs. J Clin Neurosci 2014; 21 (06) 909-913
  • 26 Amoretti N, Hauger O, Marcy P-Y. et al. Percutaneous discectomy on lumbar radiculopathy related to disk herniation: why under CT guidance? An open study of 100 consecutive patients. Eur J Radiol 2012; 81 (06) 1259-1264
  • 27 Liguori A, Pandolfi M, Gurgitano M. et al. Image-guided percutaneous mechanical disc decompression for herniated discs: a technical note. Acta Biomed 2020; 91 (10-S): e2020001
  • 28 Amoretti N, Huwart L, Marcy P-Y, Foti P, Hauger O, Boileau P. CT- and fluoroscopy-guided percutaneous discectomy for lumbar radiculopathy related to disc herniation: a comparative prospective study comparing lateral to medial herniated discs. Skeletal Radiol 2013; 42 (01) 49-53
  • 29 Splendiani A, D'Orazio F, Patriarca L. et al. Imaging of post-operative spine in intervertebral disc pathology. Musculoskelet Surg 2017; 101 (Suppl. 01) 75-84
  • 30 Babar S, Saifuddin A. MRI of the post-discectomy lumbar spine. Clin Radiol 2002; 57 (11) 969-981
  • 31 Dina TS, Boden SD, Davis DO. Lumbar spine after surgery for herniated disk: imaging findings in the early postoperative period. AJR Am J Roentgenol 1995; 164 (03) 665-671
  • 32 Annertz M, Jönsson B, Strömqvist B, Holtås S. Serial MRI in the early postoperative period after lumbar discectomy. Neuroradiology 1995; 37 (03) 177-182
  • 33 Muramatsu K, Hachiya Y, Morita C. Postoperative magnetic resonance imaging of lumbar disc herniation: comparison of microendoscopic discectomy and Love's method. Spine 2001; 26 (14) 1599-1605
  • 34 Grane P, Josephsson A, Seferlis A, Tullberg T. Septic and aseptic post-operative discitis in the lumbar spine—evaluation by MR imaging. Acta Radiol 1998; 39 (02) 108-115
  • 35 Takahashi Y, Sato T, Hyodo H. et al. Incidental durotomy during lumbar spine surgery: risk factors and anatomic locations: clinical article. J Neurosurg Spine 2013; 18 (02) 165-169
  • 36 Paez D, Sathekge MM, Douis H. et al. Comparison of MRI, [18F]FDG PET/CT, and 99mTc-UBI 29-41 scintigraphy for postoperative spondylodiscitis—a prospective multicenter study. Eur J Nucl Med Mol Imaging 2021; 48 (06) 1864-1875
  • 37 Sen KK, Batish VK, Saini M. Need for precise protocol in magnetic resonance imaging of the post operative spine. Med J Armed Forces India 2002; 58 (01) 9-12
  • 38 Zaina F, Tomkins-Lane C, Carragee E, Negrini S. Surgical versus non-surgical treatment for lumbar spinal stenosis. Cochrane Database Syst Rev 2016; (01) CD010264
  • 39 Schizas C, Theumann N, Burn A. et al. Qualitative grading of severity of lumbar spinal stenosis based on the morphology of the dural sac on magnetic resonance images. Spine 2010; 35 (21) 1919-1924
  • 40 Ferrero E, Guigui P. Current trends in the management of degenerative lumbar spondylolisthesis. EFORT Open Rev 2018; 3 (05) 192-199
  • 41 Gille O, Challier V, Parent H. et al; French Society of Spine Surgery (SFCR). Degenerative lumbar spondylolisthesis: cohort of 670 patients, and proposal of a new classification. Orthop Traumatol Surg Res 2014; 100 (6, Suppl): S311-S315
  • 42 Winegar BA, Kay MD, Chadaz TS, Taljanovic MS, Hood KA, Hunter TB. Update on imaging of spinal fixation hardware. Semin Musculoskelet Radiol 2019; 23 (02) e56-e79
  • 43 Zeitoun R, Hussein M. Approach to interpret images produced by new generations of multidetector CT scanners in post-operative spine. Br J Radiol 2017; 90 (1079): 20170082
  • 44 Hamid S, Nasir MU, So A, Andrews G, Nicolaou S, Qamar SR. Clinical applications of dual-energy CT. Korean J Radiol 2021; 22 (06) 970-982
  • 45 Guggenberger R, Winklhofer S, Osterhoff G. et al. Metallic artefact reduction with monoenergetic dual-energy CT: systematic ex vivo evaluation of posterior spinal fusion implants from various vendors and different spine levels. Eur Radiol 2012; 22 (11) 2357-2364
  • 46 Srinivasan A, Hoeffner E, Ibrahim M, Shah GV, LaMarca F, Mukherji SK. Utility of dual-energy CT virtual keV monochromatic series for the assessment of spinal transpedicular hardware-bone interface. AJR Am J Roentgenol 2013; 201 (04) 878-883
  • 47 Ariyanayagam T, Malcolm PN, Toms AP. Advances in metal artifact reduction techniques for periprosthetic soft tissue imaging. Semin Musculoskelet Radiol 2015; 19 (04) 328-334
  • 48 Williams AL, Gornet MF, Burkus JK. CT evaluation of lumbar interbody fusion: current concepts. AJNR Am J Neuroradiol 2005; 26 (08) 2057-2066
  • 49 Byvaltsev VA, Kalinin AA, Giers MB, Shepelev VV, Pestryakov YY, Biryuchkov MY. Comparison of MRI visualization following minimally invasive and open TLIF: a retrospective single-center study. Diagnostics (Basel) 2021; 11 (05) 906
  • 50 Ghodasara N, Yi PH, Clark K, Fishman EK, Farshad M, Fritz J. Postoperative spinal CT: what the radiologist needs to know. Radiographics 2019; 39 (06) 1840-1861
  • 51 Hauger O, Obeid I, Pelé E. Imagerie du rachis arthrodésé. J Radiol 2010; 91 (9 Pt 2): 1035-1048
  • 52 Ray CD. Threaded fusion cages for lumbar interbody fusions. An economic comparison with 360° fusions. Spine 1997; 22 (06) 681-685
  • 53 Proietti L, Perna A, Ricciardi L. et al. Radiological evaluation of fusion patterns after lateral lumbar interbody fusion: institutional case series. Radiol Med (Torino) 2021; 126 (02) 250-257