Synthesis 2022; 54(23): 5291-5299
DOI: 10.1055/s-0041-1738424
paper

Sn(OTf)2-Catalyzed Allylic Substitution of Thiols to Allyl Alcohols: Access to Allyl Sulfides

,
Zhenbo Gao
We are grateful for the financial support of the 2019 Jiangsu Shuang Chuang Doctoral Grants, and Nanjing Agricultural University Research Start-up Funding.


Abstract

A novel method for the mild and efficient synthesis of allyl sulfides has been developed with allyl alcohols and thiols as substrates. The desired allyl sulfide was obtained using a catalytic amount of Sn(OTf)2 in dichloromethane at room temperature after a reaction time of 12 hours. A diverse range of allyl sulfides have been obtained with good to excellent yields, including both linear and cyclic derivatives (27 products). Additionally, gram-scale reactions can be easily carried out with only 1 mol% catalyst, giving over 90% yields, which further proves the efficiency of our approach in synthesis. This methodology has both deep research significance and application value, providing a new pathway to access sulfide compounds. We strongly believe our method would be attractive to synthetic chemists and would be widely used in synthetic chemistry.

Supporting Information



Publikationsverlauf

Eingereicht: 13. Juni 2022

Angenommen nach Revision: 08. Juli 2022

Artikel online veröffentlicht:
11. August 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Poojary MM, Putnik P, Bursać Kovačević D, Barba FJ, Lorenzo JM, Dias DA, Shpigelman A. J. Food Compos. Anal. 2017; 61: 28
    • 1b Mandal SK, Das A, Dey S, Sahoo U, Bose S, Bose A, Dhiman N, Madan S, Ramadan MA. Egypt. J. Chem. 2019; 62: 1
    • 1c Subramanian MS, Nandagopal GM. S, Nordin SA, Thilakavathy K, Joseph N. Molecules 2020; 25: 4111
    • 1d Ruhee RT, Roberts LA, Ma S, Suzuki K. Front. Nutr. 2020; 7: 64
    • 2a Wargovich MJ. J. Nutr. 2006; 136: 832S
    • 2b Arunkumar A, Vijayababu MR, Venkataraman P, Senthilkumar K, Arunakaran J. Biol. Pharm. Bull. 2006; 29: 375
    • 2c Rao PS. S, Narasimha MM, Duane DM, Subhash C, Anil K, Santosh K. Curr. Drug Metab. 2015; 16: 486
    • 2d Rahman MA, Gong Y, Kumar S. Toxicol. Lett. 2018; 292: 31
    • 2e Ahmed M, Doaa AE. I, Rasha YE, Hayam MA. A. Lett. Drug Des. Discovery 2019; 16: 200
    • 2f Pang S, Dong W, Liu N, Gao S, Li J, Zhang X, Lu D, Zhang L. Mol. Med. Rep. 2021; 24: 852
    • 3a Mussinan CJ, Keelan ME. Sulfur Compounds in Foods, ACS Symposium Series. American Chemical Society; Washington DC: 1994: 1-6
    • 3b McGorrin RJ. Volatile Sulfur Compounds in Food, Chap. 1. Qian MC, Fan X, Mahattanatawee K. ACS Symposium Series 1068; American Chemical Society; Washington DC: 2011: 3-31
  • 4 Knowles LM, Milner JA. Drug Metab. Drug Interact. 2000; 17: 81
  • 5 Masdeu-Bultó AM, Diéguez M, Martin E, Gómez M. Coord. Chem. Rev. 2003; 242: 159
  • 6 Crich D, Zou Y, Brebion F. J. Org. Chem. 2006; 71: 9172
  • 7 Aggarwal BB, Shishodia S. Biochem. Pharmacol. 2006; 71: 1397
  • 8 Brunsveld L, Kuhlmann J, Alexandrov K, Wittinghofer A, Goody RS, Waldmann H. Angew. Chem. Int. Ed. 2006; 45: 6622
  • 9 Gangjee A, Zeng Y, Talreja T, McGuire JJ, Kisliuk RL, Queener SF. J. Med. Chem. 2007; 50: 3046
  • 10 Lin YA, Chalker JM, Floyd N, Bernardes JL, Davis BG. J. Am. Chem. Soc. 2008; 130: 9642
  • 11 He J, Zha M, Cui J, Zeller M, Hunter AD, Yiu SM, Lee ST, Xu Z. J. Am. Chem. Soc. 2013; 135: 7807
  • 12 Chen D, Xing G, Yao J, Zhou H. Inorg. Chem. Front. 2017; 4: 1042
  • 13 Bouchene R, Daran JC, Poli R, Deydier E, Bouacida S, Manoury E. Inorg. Chim. Acta 2018; 470: 365
    • 14a Sun J, Fu GC. J. Am. Chem. Soc. 2010; 132: 4568
    • 14b Fujiwara Y, Sun J, Fu GC. Chem. Sci. 2011; 2: 2196
    • 14c Pritzius AB, Breit B. Angew. Chem. Int. Ed. 2015; 54: 15818
    • 14d Pritzius AB, Breit B. Angew. Chem. Int. Ed. 2015; 127: 3164
    • 14e Yang XH, Davison RT, Dong VM. J. Am. Chem. Soc. 2018; 140: 10443
    • 14f Yang XH, Davison RT, Nie SZ, Cruz FA, McGinnis TM, Dong VM. J. Am. Chem. Soc. 2019; 141: 3006
    • 14g Kumar G, Qu ZW, Ghosh S, Grimme S, Chatterjee I. ACS Catal. 2019; 9: 1162
    • 14h Kawaguchi S.-i, Yamamoto Y, Ogawa A. Mendeleev Commun. 2020; 30: 129
    • 14i Tolley LC, Fernández I, Bezuidenhout DI, Guisado-Barrios G. Catal. Sci. Technol. 2020; 11: 516
    • 14j Ji K, Lu K, Huang J, Li Z, Ding T, Chen Z. Chem. Commun. 2021; 57: 12639
    • 14k Bołt M, Delaude L, Żak P. Dalton Trans. 2022; 51: 4429
    • 14l Walkowiak J, Szyling J, Franczyk A, Melen RL. Chem. Soc. Rev. 2022; 51: 869
  • 15 Kim J, Kim J, Kang B, Hong SH. ACS Catal. 2020; 10: 6013
  • 16 Guo G, Yuan Y, Wan S, Cao X, Sun Y, Huo C. Org. Chem. Front. 2021; 8: 2990
  • 17 Liu S, Wang L, Ma Z, Zeng X, Xu B. Org. Chem. Front. 2020; 7: 3474
    • 18a Song S, Zhang Y, Yeerlan A, Zhu B, Liu J, Jiao N. Angew. Chem. Int. Ed. 2017; 56: 2487
    • 18b Li C, Li J, Tan C, Wu W, Jiang H. Org. Chem. Front. 2018; 5: 3158
    • 19a Kondo T, Morisaki Y, Uenoyama SY, Wada K, Mitsudo TA. J. Am. Chem. Soc. 1999; 121: 8657
    • 19b Divekar S, Sail M, Soufiaoui M, Sinot D. Tetrahedron 1999; 55: 4369
    • 19c Gais H.-J, Jagusch T, Spalthoff N, Gerhards F, Frank M, Raabe G. Chem. Eur. J. 2003; 9: 4202
    • 19d Yatsumonji Y, Ishida Y, Tsubouchi A, Takeda T. Org. Lett. 2007; 9: 4603
    • 19e Saha A, Ranu BC. Tetrahedron Lett. 2010; 51: 1902
    • 19f Zheng S, Gao N, Liu W, Liu D, Zhao X, Cohen T. Org. Lett. 2010; 12: 4454
    • 19g Lin A, Mao H, Zhu X, Ge H, Tan R, Zhu C, Cheng Y. Adv. Synth. Catal. 2011; 353: 3301
    • 19h Gao N, Zheng S, Yang W, Zhao X. Org. Lett. 2011; 13: 1514
    • 19i Holzwarth MS, Frey W, Plietker B. Chem. Commun. 2011; 47: 11113
    • 19j Gao N, Guo X, Zheng S, Yang W, Zhao X. Tetrahedron 2012; 68: 9413
    • 19k Gómez JE, Guo W, Kleij AW. Org. Lett. 2016; 18: 6042
    • 19l Bouchene R, Daran JC, Poli R, Deydier E, Bouacida S, Manoury E. Inorg. Chim. Acta 2018; 470: 365
    • 20a Komine N, Sako A, Hirahara SY, Hirano M, Komiya S. Chem. Lett. 2005; 34: 246
    • 20b Huang W, Shen QS, Wang JL, Zhou XG. Chin. J. Org. Chem. 2008; 26: 729
    • 20c Zaitsev AB, Caldwell HF, Pregosin PS, Veiros LF. Chem. Eur. J. 2009; 15: 6468
    • 20d Tanaka S, Pradhan PK, Maegawa Y, Kitamura M. Chem. Commun. 2010; 46: 3996
    • 20e Van Rijn JA, Guijt MC, De Vries D, Bouwman E, Drent E. Appl. Organomet. Chem. 2011; 25: 212
    • 20f Roggen M, Carreira EM. Angew. Chem. Int. Ed. 2012; 51: 8652
    • 20g Herkert L, Green SL. J, Barker G, Johnson DG, Young PC, Macgregor SA, Lee AL. Chem. Eur. J. 2014; 20: 11540
    • 20h Tabarelli G, Godoi M, Canto RF. S, Mora JR, Nome F, Braga AL. Synth. Commun. 2014; 44: 3441
    • 20i Oueslati Y, Abidi A, Sbihi HM, Rezgui F. J. Sulfur Chem. 2017; 38: 142
  • 21 Chauhan P, Mahajan S, Enders D. Chem. Rev. 2014; 114: 8807