Synthesis 2022; 54(09): 2175-2184
DOI: 10.1055/s-0041-1737336
paper

The Use of Propargylamines to Synthesize Amino-1,2,3-triazoles via Cycloaddition of Azides with Allenamines

Shanguang Qiu
a   Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou, 571158, P. R. of China
,
Wenhao Chen
a   Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou, 571158, P. R. of China
,
Dongying Li
a   Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou, 571158, P. R. of China
,
Yuxue Chen
a   Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou, 571158, P. R. of China
,
Yanning Niu
b   Department of Teaching and Research, Nanjing Forestry University, Huaian, 223003, P. R. of China
,
Yi Wu
a   Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou, 571158, P. R. of China
,
Yang Lei
a   Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou, 571158, P. R. of China
,
Luyong Wu
a   Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou, 571158, P. R. of China
,
Wenying He
a   Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou, 571158, P. R. of China
› Institutsangaben
This work was supported by the Natural Science Foundation of Hainan Province, China (219MS044) and the National Natural Science Foundation of China (NSFC-21562019).


Abstract

A novel reaction of propargylamines with aryl azides is designed for the synthesis of 5-amino-1,2,3-triazoles employing a one-pot strategy. In this process, base-mediated isomerization of propargylamines generates allenamine intermediates, which participate in a cyclization reaction with azides. Optimization of the reaction conditions revealed that t-BuOK as the base and DMF as the solvent gave the best yields. This protocol is expanded to different propargylamines and azides, with the results showing that 3-aryl propargylamines and aryl azides are tolerated to produce the corresponding 1,2,3-triazoles. This procedure provides a simple and efficient method to access a series of 5-amino-1,2,3-triazoles possessing a wide spectrum of functional groups.

Supporting Information



Publikationsverlauf

Eingereicht: 31. Oktober 2021

Angenommen nach Revision: 09. Dezember 2021

Artikel online veröffentlicht:
01. Februar 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Moses JE, Moorhouse AD. Chem. Soc. Rev. 2007; 36: 1249
    • 1b Hänni KD, Leigh DA. Chem. Soc. Rev. 2010; 39: 1240
    • 1c Mamidyala SK, Finn MG. Chem. Soc. Rev. 2010; 39: 1252
    • 1d Jewett JC, Bertozzi CR. Chem. Soc. Rev. 2010; 39: 1272
    • 1e Beale TM, Bond PJ, Brenton JD, Charnock-Jones DS, Ley SV, Myers RM. Bioorg. Med. Chem. 2012; 20: 1749
    • 1f Agalave SG, Maujan SR, Pore VS. Chem. Asian J. 2011; 6: 2696
    • 1g Thirumurugan P, Matosiuk D, Jozwiak K. Chem. Rev. 2013; 113: 4905
    • 2a Chen J.-H, Liu S.-R, Chen K. Chem. Asian J. 2010; 5: 328
    • 2b Quan X.-J, Ren Z.-H, Wang Y.-Y, Guan Z.-H. Org. Lett. 2014; 16: 5728
    • 2c Wan J.-P, Cao S, Liu Y. J. Org. Chem. 2015; 80: 9028
    • 2d Ramachary DB, Shashank AB, Karthik S. Angew. Chem. Int. Ed. 2014; 53: 10420 ; Angew. Chem. 2014, 126, 10588
    • 2e Li W, Jia Q, Du Z, Wang J. Chem. Commun. 2013; 49: 10187
    • 2f Belkheira M, Abed DE, Pons J.-M, Bressy C. Chem. Eur. J. 2011; 17: 12917
    • 2g Rogue DR, Neill JL, Antoon JW, Stevens EP. Synthesis 2005; 2497
    • 2h Wang Y.-C, Xie Y.-Y, Qu H.-E, Wang H.-S, Pan Y.-M, Huang F.-P. J. Org. Chem. 2014; 79: 4463
    • 2i Zhang X, Rakesh KP, Qin H.-L. Chem. Commun. 2019; 55: 2845
    • 2j Liu H.-N, Cao H.-Q, Cheung CW, Ma J.-A. Org. Lett. 2020; 22: 1396
    • 3a Opsomer T, Dehaen W. Chem. Commun. 2021; 57: 1568
    • 3b Li M, Zheng N, Li J, Zheng Y, Song W. Green Chem. 2020; 22: 2394
    • 3c Das P, Niina K, Hiromura T, Tokunaga E, Saito N, Shibata N. Chem. Sci. 2018; 9: 4931
    • 3d Thomas J, Fokin VV. Org. Lett. 2018; 20: 3749
    • 3e Kumar N, Ansari MY, Kant R, Kumar A. Chem. Commun. 2018; 54: 2627
    • 3f Das J, Dey S, Pathak T. J. Org. Chem. 2019; 84: 15437
    • 3g Yang H, Zeng T, Xi S, Hu S, Wu Y, Tang Y. Green Chem. 2020; 22: 7023
    • 4a Li W, Du Z, Zhang K, Wang J. Green Chem. 2015; 17: 781
    • 4b Li W, Wang J. Angew. Chem. Int. Ed. 2014; 53: 14186 ; Angew. Chem. 2014, 126, 14410
    • 4c Xu X, Zhong Y, Xing Q, Gao Z, Gou J, Yu B. Org. Lett. 2020; 22: 5176
    • 4d Rajasekar S, Anbarasan P. Chem. Asian J. 2019; 14: 4563
    • 4e Jana S, Thomas J, Dehaen W. J. Org. Chem. 2016; 81: 12426
    • 5a Huisgen R. In 1,3-Dipolar Cycloaddition Chemistry . Padwa A. John Wiley & Sons; New York: 1984
    • 5b Fan W.-Q, Katritzky AR. In Comprehensive Heterocyclic Chemistry II, Vol. 4. Katritzky AR, Rees CW, Scriven EF. V. Elsevier; Oxford: 1996: 1-126
    • 6a Ma J, Ding S. Asian J. Org. Chem. 2020; 9: 1872
    • 6b Tornøe CW, Christensen C, Meldal M. J. Org. Chem. 2002; 67: 3057
    • 6c Rostovtsev VV, Green LG, Fokin VV, Sharpless KB. Angew. Chem. Int. Ed. 2002; 41: 2596 ; Angew. Chem. 2002, 114, 2708
    • 6d Meldal M, Tornøe CW. Chem. Rev. 2008; 108: 2952
    • 6e Johansson JR, Beke-Somfai T, Stålsmeden AS, Kann N. Chem. Rev. 2016; 116: 14726
    • 6f Kim WG, Kang ME, Lee JB, Jeon MH, Lee S, Lee J, Choi B, Cal PM. S. D, Kang S, Kee J.-M, Bernardes GJ. L, Rohde J.-U, Choe W, Hong SY. J. Am. Chem. Soc. 2017; 139: 12121
    • 7a Zeng L, Lai Z, Zhang C, Xie H, Cui S. Org. Lett. 2020; 22: 2220
    • 7b Song W, Zheng N. Org. Lett. 2017; 19: 6200
    • 7c Liao Y, Lu Q, Chen G, Yu Y, Li C, Huang X. ACS Catal. 2017; 7: 7529
    • 7d Song W, Zheng N, Li M, Ullah K, Zheng Y. Adv. Synth. Catal. 2018; 360: 2429
    • 7e Song W, Zheng N, Li M, Dong K, Li J, Ullah K, Zheng Y. Org Lett. 2018; 20: 6705
    • 7f Song W, Li M, Dong K, Zheng Y. Adv. Synth. Catal. 2019; 361: 5258
    • 7g Wei F, Zhou T, Ma Y, Tung C.-H, Xu Z. Org. Lett. 2017; 19: 2098
  • 8 Loren JC, Sharpless KB. Synthesis 2005; 1514
    • 9a Zhang H, Tanimoto H, Morimoto T, Nishiyama Y, Kakiuchi K. Org. Lett. 2013; 15: 5222
    • 9b Zhang H, Tanimoto H, Morimoto T, Nishiyama Y, Kakiuchi K. Tetrahedron 2014; 70: 9828
    • 9c Maegawa K, Tanimoto H, Onishi S, Tomohiro T, Morimotoa T, Kakiuchi K. Org. Chem. Front. 2021; 8: 5793
    • 10a Lauder K, Toscani A, Scalacci N, Castagnolo D. Chem. Rev. 2017; 117: 14091
    • 10b Peshkov VA, Pereshivko OP, Van der Eycken EV. Chem. Soc. Rev. 2012; 41: 3790
    • 10c Zhang Y, Chen W, Jia X, Wang L, Li P. Chem. Commun. 2019; 55: 2785
    • 10d Yuan B, Zhang F, Li Z, Yang S, Yan R. Org. Lett. 2016; 18: 5928
    • 11a Merkul E, Boersch C, Frank W, Müller TJ. Org. Lett. 2009; 11: 2269
    • 11b Zheng C, Wang Y, Fan R. Org. Lett. 2015; 17: 916
    • 11c Liu Y, Song Z, Yan B. Org. Lett. 2007; 9: 409
    • 11d Cacchi S, Fabrizi G, Filisti E. Org. Lett. 2008; 10: 2629
    • 11e Yamamoto Y, Hayashi H, Saigoku T, Nishiyama H. J. Am. Chem. Soc. 2005; 127: 10804
    • 11f Chachignon H, Scalacci N, Petricci E, Castagnolo D. J. Org. Chem. 2015; 80: 5287
    • 11g Golantsov NE, Golubenkova AS, Festa AA, Varlamov AV, Voskressensky LG. Org. Lett. 2020; 22: 4726
    • 12a Roy B, Mondal D, Hataia J, Bandyopadhyay S. RSC Adv. 2014; 4: 56952
    • 12b Donald JR, Martin SF. Org. Lett. 2011; 13: 852
  • 13 Kumar R, Arigela RK, Samala S, Kundu B. Chem. Eur. J. 2015; 21: 18828
  • 14 Cao J, Xu G, Li P, Tao M, Zhang W. ACS Sustainable Chem. Eng. 2017; 5: 3438
  • 15 Hubert AJ, Viehe HG. J. Chem. Soc. C 1968; 228
  • 16 Huang X, Ma S. Acc. Chem. Res. 2019; 52: 1301
    • 17a Mishra PK, Verma S, Kumar M, Verma AK. Org. Lett. 2018; 20: 7182
    • 17b Zhao Z, Wei H, Xiao K, Cheng B, Zhai H, Li Y. Angew. Chem. Int. Ed. 2019; 58: 1148 ; Angew. Chem. 2019, 131, 1160
    • 18a Ferrini S, Chandanshive JZ, Lena S, Franchini MC, Giannini G, Tafi A, Taddei M. J. Org. Chem. 2015; 80: 2562
    • 18b Wang W, Peng X, Wei F, Tung C.-H, Xu Z. Angew. Chem. Int. Ed. 2016; 55: 649
    • 18c Zhou W, Zhang M, Li H, Chen W. Org. Lett. 2017; 19: 10
    • 18d Zheng X, Wan Y, Ling F, Ma C. Org. Lett. 2017; 19: 3859
    • 18e Chen Y.-H, Tüllmann CP, Ellwart M, Knochel P. Angew. Chem. Int. Ed. 2017; 56: 9236
    • 18f Wang S, Zhang Y, Liu G, Xu H, Song L, Chen J, Li J, Zhang Z. Org. Chem. Front. 2021; 8: 599
    • 19a Alexandre JA. C, Swan MK, Latchem MJ, Boyall D, Pollard JR, Hughes SW, Westcott J. ChemBioChem 2018; 19: 552
    • 19b Soltis MJ, Yeh HJ, Cole KA, Whittaker N, Wersto RP, Kohn EC. Drug Metab. Dispos. 1996; 24: 799
    • 19c Brand S, Ko EJ, Viayna E, Thompson S, Spinks D, Thomas M, Sandberg L, Francisco AF, Jayawardhana S, Smith VC, Jansen C, Rycker MD, Thomas J, MacLean L, Osuna-Cabello M, Riley J, Scullion P, Stojanovski L, Simeons FR. C, Epemolu O, Shishikura Y, Crouch SD, Bakshi TS, Nixon CJ, Reid IH, Hill AP, Underwood TZ, Hindley SJ, Robinson SA, Kelly JM, Fiandor JM, Wyatt PG, Marco M, Miles TJ, Read KD, Gilbert IH. J. Med. Chem. 2017; 60: 7284
    • 19d Biagi G, Calderone V, Giorgi I, Livi O, Scartoni V, Baragatti B, Martinotti E. Eur. J. Med. Chem. 2000; 35: 715
    • 19e Bochis RJ, Chabala JC, Fisher MH. US Patent 4590201 A1, 1986
    • 20a Qiu S, Chen Y, Song X, Liu L, Liu X, Wu L. Synlett 2021; 32: 86
    • 20b Wu L, Chen Y, Luo J, Sun Q, Peng M, Lin Q. Tetrahedron Lett. 2014; 55: 3847
    • 20c Wu L, Guo S, Wang X, Guo Z, Yao G, Lin Q, Wu M. Tetrahedron Lett. 2015; 56: 2145
    • 20d Wu L, Wang X, Chen Y, Huang Q, Lin Q, Wu M. Synlett 2016; 27: 437
    • 21a Clark JH. Chem. Rev. 1980; 80: 429
    • 21b Yokoi T, Tanimoto H, Ueda T, Morimoto T, Kakiuchi K. J. Org. Chem. 2018; 83: 12103
    • 21c Morrison ZA, Nitz M. Org. Lett. 2020; 22: 1453
  • 22 Huang Q, Tan Z, Yu C, Zhu X, Wu L. Chin. J. Org. Chem. 2017; 37: 97
  • 23 CCDC 1988769 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures
    • 24a Craig JC, Ekwuribe NN. Tetrahedron Lett. 1980; 21: 2587
    • 24b Broggini G, Zecchi G. J. Chem. Soc., Perkin Trans. 1 1991; 1843