Synlett 2020; 31(17): 1735-1739
DOI: 10.1055/s-0040-1706415
letter
© Georg Thieme Verlag Stuttgart · New York

Synthesis of Two Stereoisomers of Potentially Bioactive 13,19,20-Trihydroxy Derivative of Docosahexaenoic Acid

Narihito Ogawa
a   Department of Applied Chemistry, Meiji University, 1-1-1, Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan   Email: narihito@meiji.ac.jp
,
Shinsaku Sone
a   Department of Applied Chemistry, Meiji University, 1-1-1, Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan   Email: narihito@meiji.ac.jp
,
Song Hong
b   Neuroscience Center of Excellence, Louisiana State University, Health Sciences Center, 2020 Gravier St., New Orleans, LA 70112, USA
c   Department of Ophthalmology, Louisiana State University, Health Sciences Center, New Orleans, LA 70112, USA
,
Yan Lu
b   Neuroscience Center of Excellence, Louisiana State University, Health Sciences Center, 2020 Gravier St., New Orleans, LA 70112, USA
,
Yuichi Kobayashi
d   Meiji University, Organization for the Strategic Coordination of Research and Intellectual Properties, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
› Author Affiliations
This work was supported by the Japan Society for the Promotion of Science (JSPS KAKENHI, Grant Number JP15H05904 (Y. K.)). This work was also supported by the National Institute of Health of The United States of America (Grant Numbers R01DK087800-07, R01DK087800-07S1, 1R21AG060430, 1R21AG060430S1, 1R21AG066119, and R01GM136874 (S. H.)).
Further Information

Publication History

Received: 29 June 2020

Accepted after revision: 16 July 2020

Publication Date:
17 August 2020 (online)


Abstract

The C16–C22 fragment with the acetylene terminus was constructed through the asymmetric dihydroxylation of the corresponding olefin, while the 15-iodo-olefin corresponding to the C11–C15 part was prepared via the asymmetric transfer hydrogenation of the corresponding acetylene ketone followed by hydrozirconation/iodination. Both pieces were joined by a Sonogashira coupling, and the product was further converted into the title compound via a Wittig reaction with the remaining C1–C10 segment and Boland reduction using Zn with TMSCl.

Supporting Information

 
  • References and Notes

    • 1a Pham TL, Kakazu AH, He J, Jun B, Bazan NG, Bazan HE. P. Sci. Rep. 2020; 10: 4582
    • 1b Saini RK, Keum Y.-S. Life Sci. 2018; 203: 255
    • 1c Basil MC, Levy BD. Nat. Rev. Immunol. 2016; 16: 51
    • 1d Serhan CN, Dalli J, Colas RA, Winkler JW, Chiang N. Biochim. Biophys. Acta 2015; 1851: 397
    • 1e Kuhn H, Banthiya S, van Leyen K. Biochim. Biophys. Acta 2015; 1851: 308
    • 1f Isobe Y, Arita M. J. Clin. Biochem. Nutr. 2014; 55: 79
    • 1g Serhan CN, Nicos A, Petasis NA. Chem. Rev. 2011; 111: 5922
    • 1h Lukiw WJ, Cui J.-G, Marcheselli VL, Bodker M, Botkjaer A, Gotlinger K, Serhan CN, Bazan NG. J. Clin. Invest. 2005; 115: 2774
    • 1i Arita M, Bianchini F, Aliberti J, Sher A, Chiang N, Hong S, Yang R, Petasis NA, Serhan CN. J. Exp. Med. 2005; 201: 713
    • 1j Bazan NG. Mol. Neurobiol. 2005; 31: 219
    • 1k Bazan NG. Brain Pathol. 2005; 15: 159
    • 1l Marcheselli VL, Hong S, Lukiw WJ, Tian XH, Gronert K, Musto A, Hardy M, Gimenez JM, Chiang N, Serhan CN, Bazan NG. J. Biol. Chem. 2003; 278: 43807
    • 2a Lu Y, Tian H, Hong S. J. Lipid Res. 2010; 51: 923
    • 2b Tian H, Lu Y, Shah SP, Hong S. J. Cell. Biochem. 2010; 111: 266
    • 3a Tian H, Lu Y, Shah SP, Wang Q, Hong S. Stem Cells Dev. 2012; 21: 1187
    • 3b Tian H, Lu Y, Shah SP, Hong S. Am. J. Pathol. 2011; 179: 1780
    • 3c Tian H, Lu Y, Shah SP, Hong S. J. Biol. Chem. 2011; 286: 4443
  • 4 Nishimura K, Sakaguchi T, Nanba Y, Suganuma Y, Morita M, Hong S, Lu Y, Jun B, Bazan NG, Arita M, Kobayashi Y. J. Org. Chem. 2018; 83: 154
  • 5 Hong S, Lu Y, Tian H, Alapure BV, Wang Q, Bunnell BA, Laborde JM. Chem. Biol. 2014; 21: 1318
  • 6 Hong S, Lu Y, Morita M, Saito S, Kobayashi Y, Jun B, Bazan NG, Xu X, Wang Y. Synlett 2019; 30: 343
    • 7a Roy J, Watson JE, Hong IS, Fan TM, Das A. J. Med. Chem. 2018; 61: 5569
    • 7b McDougle DR, Watson JE, Abdeen AA, Adili R, Caputo MP, Krapf JE, Johnson RW, Kilian KA, Holinstat M, Das A. Proc. Natl. Acad. Sci. U.S.A. 2017; 114: E6034
    • 7c Shearer GC, Harris WS, Pederson TL, Newman JW. J. Lipid Res. 2010; 51: 2074
    • 8a Pickens CA, Sordillo LM, Zhang C, Fenton JI. Metab. Clin. Exp. 2017; 70: 177
    • 8b Tajima Y, Ishikawa M, Maekawa K, Murayama M, Senoo Y, Nishimaki-Mogami T, Nakanishi H, Ikeda K, Arita M, Taguchi R, Okuno A, Mikawa R, Niida S, Takikawa O, Saito Y. Lipids Health Dis. 2013; 12: 68
    • 8c Morisseau C, Inceoglu B, Schmelzer K, Tsai H.-J, Jinks SL, Hegedus CM, Hammock BD. J. Lipid Res. 2010; 51: 3481
    • 8d Oliw EH, Sprecher HW. Biochim. Biophys. Acta 1991; 1086: 287
    • 8e VanRollins M, Baker RC, Sprecher HW, Murphy RC. J. Biol. Chem. 1984; 259: 5776
  • 9 Arita M, Arai H, Isobe Y, Kubota T. WO2012023254 A1, 2012
  • 10 Mortimer M, Järving R, Brash AR, Samel N, Järving I. Arch. Biochem. Biophys. 2006; 445: 147
    • 11a Fredman G, Hellmann J, Proto JD, Kuriakose G, Colas RA, Dorweiler B, Connolly ES, Solomon R, Jones DM, Heyer EJ, Spite M, Tabas I. Nat. Commun. 2016; 7: 12859
    • 11b Hong S, Gronert K, Devchand PR, Moussignac R.-L, Serhan CN. J. Biol. Chem. 2003; 278: 14677
    • 11c Serhan CN, Hong S, Gronert K, Colgan SP, Devchand PR, Mirick G, Moussignac R.-L. J. Exp. Med. 2002; 196: 1025
  • 12 Kubota T, Arita M, Isobe Y, Iwamoto R, Goto T, Yoshioka T, Urabe D, Inoue M, Arai H. FASEB J. 2014; 28: 586
    • 13a Wang C, Liu W, Yao L, Zhang X, Zhang X, Ye C, Jiang H, He J, Zhu Y, Ai D. Br. J. Pharmacol. 2017; 174: 2358
    • 13b Coffa G, Hill EM. Lipids 2000; 35: 1195
    • 13c Hawkins DJ, Brash AR. J. Biol. Chem. 1987; 262: 7629
  • 14 A similar compound would be derived from n-3 docosapentaenoic acid, see: Vik A, Dalli J, Hansen TV. Bioorg. Med. Chem. Lett. 2017; 27: 2259
    • 15a Young UJ, Miklossy G, Chai X, Wongwiwatthananukit S, Toyama O, Songsak T, Turkson J, Chang LC. Fitoterapia 2014; 93: 194
    • 15b Blée E, Schuber F. Eur. J. Biochem. 1995; 230: 229
    • 15c Morris LJ, Crouchman ML. Lipids 1972; 7: 372
    • 15d Morris LJ, Crouchman ML. Lipids 1969; 4: 50
  • 16 Kolb HC, VanNieuwenhze MS, Sharpless KB. Chem. Rev. 1994; 94: 2483
  • 17 Matsumura K, Hashiguchi S, Ikariya T, Noyori R. J. Am. Chem. Soc. 1997; 119: 8738
  • 18 Spinella A, Caruso T, Martino M, Sessa C. Synlett 2001; 1971
  • 19 Caruso T, Spinella A. Tetrahedron: Asymmetry 2002; 13: 2071
  • 20 Ogawa N, Tojo T, Kobayashi Y. Tetrahedron Lett. 2014; 55: 2738
    • 22a Kiyotsuka Y, Igarashi J, Kobayashi Y. Tetrahedron Lett. 2002; 43: 2725
    • 22b Huang Z, Negishi E. Org. Lett. 2006; 8: 3675
  • 24 Brown CA, Ahuja VK. J. Chem. Soc., Chem. Commun. 1973; 553
  • 25 The use of 1 equiv of HMPA caused the elimination of the TBDPS-oxy group.
  • 26 Mohamed YM. A, Hansen TV. Tetrahedron 2013; 69: 3872
  • 27 Boland W, Schroer N, Sieler C. Helv. Chim. Acta 1987; 70: 1025
  • 28 Determined by 1H NMR spectroscopy and R f values (0.60 and 0.33 for the byproduct and 25 (hexane/EtOAc = 1:2).
  • 29 Dayaker G, Durand T, Balas L. Chem. Eur. J. 2014; 20: 2879 ; see the Supporting Information on page S35
  • 30 To an argon-bubbled suspension of Zn powder (4.30 g, 65.8 mmol) in H2O (20 mL) were added Cu(OAc)2 (436 mg, 2.40 mmol) and, after 20 min, AgNO3 (442 mg, 2.60 mmol). The suspension was stirred for 45 min and filtered by suction, and the remaining solids were washed with H2O, MeOH, acetone, and Et2O, sequentially. A solution of triol 5aa (129 mg, 0.330 mmol) in H2O/MeOH (1:1, 20 mL) was added to the above solids. Subsequently, TMSCl (0.410 mL, 3.28 mmol) was added. The mixture was stirred at rt for 18 h and filtered through a pad of Celite. The filtrate was concentrated, and the residue was purified first by chromatography on silica gel (hexane/EtOAc) and second by recycling HPLC (LC-Forte/R equipped with YMC-Pack SIL-60, ø 20 × 250 mm, hexane/EtOAc 30:70, 25 mL/min) to afford methyl ester 25 (104 mg, 81%) as a colorless liquid: Rf  = 0.22 (hexane/EtOAc = 1:2); [α]D 21 –2.3 (c 1.0, CHCl3). IR (neat): 3480, 1733, 1652, 759 cm–1. 1H NMR (400 MHz, CDCl3): δ = 0.99 (t, J = 7.4 Hz, 3 H), 1.44–1.66 (m, 2 H), 1.77 (br s, 1 H), 2.22–2.52 (m, 10 H), 2.77–2.90 (m, 4 H), 3.40 (dt, J = 8.4, 4.2 Hz, 1 H), 3.53 (q, J = 5.8 Hz, 1 H), 3.68 (s, 3 H), 4.25 (q, J = 6.0 Hz, 1 H), 5.31–5.60 (m, 7 H), 5.77 (dd, J = 15.2, 6.0 Hz, 1 H), 6.16 (t, J = 11.2 Hz, 1 H), 6.55 (dd, J = 15.2, 11.2 Hz, 1 H). 13C NMR (100 MHz, CDCl3): δ = 10.1, 22.9, 25.7, 25.9, 26.6, 32.3, 34.1, 35.4, 51.7, 71.9, 73.5, 75.1, 125.0, 125.3, 127.5, 127.9, 128.0, 128.3, 129.4, 130.8, 131.2, 136.5, 173.8. HRMS (FD): m/z calcd for C23H36O5 [M]+: 392.25627; found: 392.25781.