Hamostaseologie 1987; 07(03/04): 57-62
DOI: 10.1055/s-0038-1660430
Originalarbeit
Schattauer GmbH

Die Bedeutung von Kalzium bei der Aktivierung der Blutplättchen

P. A. Kyrle
1   I. Medizinische Universitätsklinik Wien (Vorstand: Prof. Dr. Dr. h. c. E. Deutsch)
› Author Affiliations
Further Information

Publication History

Publication Date:
25 June 2018 (online)

Zusammenfassung

In jüngster Vergangenheit konnte gezeigt werden, daß der Freisetzung intrazellulären Kalziums bei der Aktivierung von Blutplättchen wesentliche Bedeutung zukommt. Externe Stimuli aktivieren durch Bindung an Rezeptoren, die sich an der Oberfläche der Plättchen befinden, die an der Innenseite der Plasmamembran lokalisierte Phospholipase C. Phospholipase C wandelt das ebenfalls an der Innenseite der Plasmamembran lokalisierte Phospholipid Phosphatidylinosittriphosphat (PIP3) in Inosittriphosphat (IP3) und Diacylglycerin (DAG) um. IP3 setzt höchstwahrscheinlich aus intrazellulären Speichern (dichtes tubuläres System) Kalzium in das Zytosol der Plättchen frei. DAG aktiviert die an der Innenseite der Plättchenplasmamembran befindliche C-Kinase. Die Aktivität der C-Kinase ist von der Gegenwart von Phosphatidylserin und Kalzium abhängig. Indem DAG die Sensitivität der C-Kinase gegenüber Kalzium deutlich erhöht, ist eine Aktivierung der C-Kinase auch bei fehlender intrazellulärer Kalziumfreisetzung möglich. Durch die Freisetzung intrazellulären Kalziums wird das von Kalzium abhängige Calmodulin aktiviert und katalysiert seinerseits die Phosphorylierung eines 20 kD-Proteins, die leichte Kette des Myosins, durch die Myosinleichtkettenkinase. Die CKinase phosphoryliert ein 47 kD-Protein, aber auch die leichte Kette des Myosins, allerdings an anderer Stelle als die Myosinleichtkettenkinase. Die Phosphorylierung dieser Proteine ist mit der Freisetzung von Serotonin aus den dense bodies und von sauren Hydrolasen aus den Lysosomen vergesellschaftet. Die Funktion der phosphorylierten Proteine bei der Plättchenaktivierung ist jedoch derzeit ungeklärt und sollte in Zukunft Gegenstand intensiver Forschung sein.

 
  • LITERATUR

  • 1 Agranoff B W, Murthi P, Seguin E B. Thrombin-induced phosphadiesteratic cleavage of phosphatidylinositol biphosphate in human platelets. J Biol Chem 1983; 258: 2075-8.
  • 2 Authi K S, Crawford N. Inositol 1,4,5-triphosphate induced release of sequestered Ca2+ from highly purified human intracellular platelet membranes. Biochem J 1985; 255: 247-53.
  • 3 Berridge M J. Inositol triphosphate and diacylglycerol as second messengers. Biochem J 1984; 220: 345-60.
  • 4 Berridge M J, Dawson R M C, Downes C P, Heslop J P, Irvine R F. Changes in the levels of inositol phosphates after agonistdependent hydrolysis of membrane phosphoinositides. Biochem J 1983; 212: 473-82.
  • 5 Billah M M, Lapetina E G. Degradation of Phosphatidylinosit-4,5-biphosphate is insensitive to Ca++ mobilization in stimulated platelets. Biochem Biophys Res Comm 1982; 109: 217-22.
  • 6 Blaustein M B. Intracellular calcium as a second messenger. Whats so special about calcium?. In: Calcium in Biological Systems. Rubin R P, Weiss G B, Putney W. (Eds). New York: Plenum; 1983: 23-33.
  • 7 Burgess G M, Godfrey P P, McKinney J S, Berridge M J, Irvine R T, Putney Jr J W. The second linking receptor activation to internal calcium release in liver. Nature 1984; 309: 63-6.
  • 8 Castagna M, Takai Y, Kaibuchi K, Sano K, Kikkawa M, Nishizuka Y. Direct activation of calcium-activated, phospholipid-dependent protein kinase by tumor-promoting phorbol esters. J Biol Chem 1982; 257: 7847-51.
  • 9 Feinman R D, Detwiler T C. Platelet secretion induced by divalent cation ionophores. Nature 1974; 249: 172-3.
  • 10 Feinstein M B, Halenda S P, Zavoica G B. Calcium and platelet function. In: Calcium and Cell Physiology. Marme D. (Ed). Berlin Heidelberg New York - Tokyo: Springer; 1985: 345-76.
  • 11 Gerrard J M, Peterson D A, White J G. Calcium mobilization. In: Platelets in Biology and Pathology. Gordon J L. (Ed). Amsterdam New York Oxford: Elsevier, North-Holland Biomedical Press; 1981: 407-36.
  • 12 Haslam R J, Lynham J A. Relationship between phosphorylation of blood platelet proteins and secretion of platelet granule constituents I. Effects of different aggregating agents. Biochem Biophys Res Comm 1977; 77: 714-22.
  • 13 Imaoka T, Lynkam J A, Haslam R J. Purification and characterization of the 47.000 dalton protein phosphorylated during degranulation of human platelets. J Biol Chem 1983; 258: 11404-14.
  • 14 Kaibuchi K, Sano K, Hoshijima M, Takai Y, Nishizuka Y. Phosphatidylinositol turnover in platelet activation; calcium mobilization and protein turnover. Cell Calcium 1982; 03: 323-35.
  • 15 Käser-Glanzmann R, Jakabova M, George J N, Liischer E F. Further characterization of calcium-accumulating vesicles from human blood platelets. Biochim Biophys Acta 1978; 512: 1-12.
  • 16 Kawahara Y, Takai Y, Minakuchi R, Sano K, Nishizuka Y. Phospholipid turnover as a possible transmembrane signal for protein phosphorylation during human platelet activation by thrombin. Biochem Biophys Res Comm 1980; 97: 309-17.
  • 17 Kishimoto A, Takai Y, Mori T, Kikkawa M, Nishizuka Y. Activation of calcium phospholipid-dependent protein kinase by diacylglycerol. Its possible relation to phosphatidylinositol turnover. J Biol Chem 1980; 255: 2273-6.
  • 18 Knight D E, Scrutton M B. Direct evidence for a role of Ca++ in amine storage granule secretion by human platelets. Thromb Res 1980; 20: 437-46.
  • 19 Knight D E, Hallam T J, Scrutton M C. Agonist selectivity and second messenger concentration in Ca2+-mediated secretion. Nature 1982; 296: 256-237.
  • 20 Lages B, Scrutton M C, Holmsen H, Day H J, Weiss H J. Metal ion contents of gelfiltered platelets from patients with storage pool disease. Blood 1975; 46: 119-30.
  • 21 Lyons R, Stanford N, Majerus P. Thrombin-induced protein phosphorylation in human platelets. J Clin Invest 1975; 56: 924-36.
  • 22 Michell R H. Inositol phospholipids and cell surface receptor function. Biochim Biophys Acta 1975; 415: 81-147.
  • 23 Mürer E H, Holme R. A study of the release of calcium from human blood platelets and inhibition by metabolic inhibitors, N-ethyl-maleimide and aspirin. Biochim Biophys Acta 1970; 222: 197-205.
  • 24 Mürer E H. Thrombin-induced release of calcium from blood platelets. Science 1969; 166: 623.
  • 25 Nake M, Nishikawa M, Adelstein R D. et al. Phorbol ester-induced activation of human platelets is associated with protein kinase C phosphorylation of myosin light chains. Nature 1983; 306: 490-2.
  • 26 Nishizuka Y. The role of protein kinase C in cell surface signal transduction and tumor promotion. Nature 1983; 308: 693-5.
  • 27 Pollock W K, Irvine R F, Rink T J. Cytosolic calcium and free arachidonate levels in Fura-2 loaded platelets stimulated by ionomy ein, thrombin and collagen. 6th International Conference on Prostaglandins and Related Compounds, Florenz 1986: 151 (abstr).
  • 28 Putney Jr J W. Inositol lipids and cell stimulation in mammalian salivary gland. Cell Calcium 1982; 03: 369-83.
  • 29 Rink T, Smith S W, Tsien R Y. Cytoplasmic free Ca++ in human platelets: Ca++ thresholds and Ca-independent activation for shape-change and secretion. FEBS Lett 1982; 148: 21-6.
  • 30 Rink T, Sanchez A, Hallam T J. Diacylglycerol and phorbol ester stimulate secretion without raising cytoplasmic free calcium in human platelets. Nature 1983; 305: 317-9.
  • 31 Rink T J, Smith W S, Tsien R Y. Intracellular free calcium in platelet shape change and aggregation. J Physiol 1982; 324: 53-4.
  • 32 Rink T J, Smith S W, Tsien R Y. Cytoplasmic free Ca2+ in human platelets: Ca2+ thresholds and Ca-independent activation for shape-change and secretion. FEBS Lett 1982; 148: 21-6.
  • 33 Rittenhouse-Simmons S. Differential activation of platelet phospholipases by thrombin and ionophore. J Biol Chem 1981; 256: 4153-5.
  • 34 Rittenhouse-Simmons S, Deykin D. Release and metabolism of arachidonate in human platelets. In: Platelets in Biology and Pathology 2. Gordon J L. (ed). Amsterdam: Elsevier/North Holland Biomedical Press; 1981: 349-72.
  • 35 Sano K, Takai Y, Yamanishi J, Nishizuka Y. A role of calcium-activated phospholipid-dependent protein kinase in human platelet activation. J Biol Chem 1983; 258: 2010-3.
  • 36 Scharf R E, Lüscher E F. The role of mitochondria in the regulation of the cytosolic Ca++ levels in human blood platelets. Thromb Haemostas 1979; 42: 82-6.
  • 37 Steiner M, Tateishi T. Distribution and transport of calcium in human platelets. Biochim Biophys Acta 1974; 367: 232-46.
  • 38 Streb H, Irvine R F, Berridge M J, Schulz I. Release of calcium from a nonmitochondrial intracellular store in pancreatic acinar cells by inositol-1,4,5-triphosphate. Nature 1983; 306: 67-9.
  • 39 Suematsu E, Hirata M, Hashimoto T, Kuriyama H. Inositol 1,4,5-Triphosphate releases calcium from intracellular store sites in skinned single cells of porcine coronary artery. Biochem Biophys Res Comm 1984; 120: 481-5.
  • 40 Takai Y, Kishimoto A, Kikkawa M, Mori T, Nishizuka Y. Unsaturated diacylglycerol as a possible messenger for the activation of calcium-activated, phospholipid-dependent protein kinase system. Biochem Biophys Res Comm 1979; 91: 1218-24.
  • 41 Takai Y, Kaibuchi K, Sano K, Nishizuka Y. Counteraction of calciumactivated, phospholipid-dependent protein kinase activation by adenosin 3,5-monophosphate and guanosin 3,5-monophosphate in platelets. J Biochem 1982; 91: 403-6.
  • 42 Tsien R Y, Pozzan T, Rink T J. Calcium haemostasis in intact lymphocytes : lymphoplasmic free calcium monitored with a new, intracellularly trapped fluorescent indicator. J Cell Biol 1982; 94: 325-34.
  • 43 Tsien R Y, Pozzan T, Rink T J. T-cell mitogens cause early changes in cytoplasmic free Ca++ and membrane potential in lymphocytes. Nature 1982; 295: 68-77.
  • 44 Westwick J, Poll C. Mechanisms of calcium homeostasis in the polymorphonuclear leucocyte. Agents Actions 1986; 19: 80-6.