Thromb Haemost 1987; 58(04): 957-959
DOI: 10.1055/s-0038-1646034
Original Article
Schattauer GmbH Stuttgart

In Vitro and In Vivo Antiaggregant Effects of Magnesium Halogenates

R Cantón
The Departamento de Farmacologia, Facultad de Farmacia, Universidad Complutense de Madrid, Spain
,
J Manzanares
The Departamento de Farmacologia, Facultad de Farmacia, Universidad Complutense de Madrid, Spain
,
E Alvarez
The Departamento de Farmacologia, Facultad de Farmacia, Universidad Complutense de Madrid, Spain
,
F Zaragozá
The Departamento de Farmacologia, Facultad de Farmacia, Universidad Complutense de Madrid, Spain
› Author Affiliations
Further Information

Publication History

Received 15 January 1987

Accepted after revision 08 May 1987

Publication Date:
29 June 2018 (online)

Summary

The in vitro antiplatelet aggregating activity of magnesium and magnesium associated with soluble citroflavomJids (hesperidin and eriodictin, 1:1) is well-established.

The degree of inhibition of in vitro platelet aggregation activity produced by different concentrations of magnesium halogenates was determined. ADP (4 μM) was used to induce aggregation following Cardinal and Flowers’ (1) technique.

Antithtombotic activity was studied in vivo. The differencein duration. of ADP-induced respiratory dysfunction was compared between animals fed 25 mg/kg magnesium halogenates for 10 days before testing and controls.

An increase in circulating platelets was observed in rats treated with magnesium halogenates.

 
  • References

  • 1 Cardinal DC, Flower RJ. The electronic aggregometer, a model device for assessing platelet behavior in blood. J Pharmacol Meth 1980; 3: 135-158
  • 2 Altura BM, Altura BT, Grabewold A. Magnesium deficiency and hypertension: correlation between magnesium deficiency diets and microcirculatory changes in situ. Science 1984; 223: 1315-1317
  • 3 Feinstein MM. The role of calcium in blood platelet function. In: Calcium in Drug Action. Weiss GB. (ed.) Plenum Press; New York: 1978. pp 197-234
  • 4 Singh BN, Hecht HS, Nadmanee K. Electrophysiology and hemody namic effects of slow-channel blocking drugs. Prog Cardiovasc Dis 1982; 25: 103-108
  • 5 Stone DH, Animan EM, Muller JE. Calcium channel blocking agents in the treatment of cardiovascular disorders. II. Hemodynamic effects and clinical implications. Ann Intern Med 1980; 83: 886-894
  • 6 Zaragozà F, Iglesias I, Benedi J, Fernandez P. Efecto sobre la agregación plaquetaria de los citroflavonoides. Fitoterapia 1985; LVI (06) 343-347
  • 7 Ellroot G, Chew C YC, Singh BN. Therapeutic implications of slow-channel blockade in cardiocirculatory disorders. Circulation 1980; 62: 669-673
  • 8 Dodds WJ. Platelet function in animals: species and specities. In: Platelets: a multidisciplinary approach. Gaetano G, Garattini S. (eds.) Raven Press; New York: 1978
  • 9 Fleckenstein A. Specific inhibitors and promoters of calcium action in the excitation-contraction coupling of heart muscle and their role in the prevention or production of myocardial lesions. In: Calcium and the heart. Harris P, Opie LH. (eds.) Academic Press; London, New York: 1971. pp 135-188
  • 10 Fleckenstein A. Physiologie und Pharmacologie der transmembranaren Natrium-, Kalium- und Caliumbewegungen. Arz Forsch 1972; 22: 2019-2025
  • 11 Levine BS, Coburn SC. Magnesium, the mimic antagonist of calcium. N Engl J Med 1984; 310: 1253-1255
  • 12 Reuters H. Divalent cations as charge carriers in excitable membranes. Prog Biophys Mol Biol 1973; 26: 1-4
  • 13 Rosenberg L, Trygle DL. Calcium, calcium translocation and specific calcium antagonist. In: Calcium in drug action. Weiss GB. (ed.) Plenum Press; New York: 1978. pp 3-31
  • 14 Hovig T. The effect of calcium and magnesium on rabbit blood platelet aggregation in vitro. Thromb Diath Haemorrh 1964; 12: 179-199
  • 15 Hugues MN. The inorganic chemistry of biological processes. 2nd. ed. John Wiley and Sons; 1981
  • 16 Manzanares J, Benedi J, Iglesias I, Zaragozá F. Efecto antitrombótico de la nicergolina. An Real Acad Farm 1986; 52: 35-38