Nuklearmedizin 1998; 37(08): 262-267
DOI: 10.1055/s-0038-1632346
Originalarbeiten — Original Articles
Schattauer GmbH

Untersuchungen zum Einfluß von »Ecstasy« auf den zerebralen Glukosemetabolismus: eine 18-FDG-PET-Studie

Investigations on the Effects of “Ecstasy” on Cerebral Glucose Metabolism: an 18-FDG PET Study
M. Schreckenberger
1   Kliniken für Nuklearmedizin, Universitätsklinikum der RWTH Aachen, Deutschland
,
E. Gouzoulis-Mayfrank
2   Kliniken für Psychiatrie, Universitätsklinikum der RWTH Aachen, Deutschland
,
O. Sabri
1   Kliniken für Nuklearmedizin, Universitätsklinikum der RWTH Aachen, Deutschland
,
Ch. Arning
1   Kliniken für Nuklearmedizin, Universitätsklinikum der RWTH Aachen, Deutschland
,
Th. Tuttaß
1   Kliniken für Nuklearmedizin, Universitätsklinikum der RWTH Aachen, Deutschland
,
G. Schulz
1   Kliniken für Nuklearmedizin, Universitätsklinikum der RWTH Aachen, Deutschland
,
H.-J. Kaiser
1   Kliniken für Nuklearmedizin, Universitätsklinikum der RWTH Aachen, Deutschland
,
G. Wagenknecht
1   Kliniken für Nuklearmedizin, Universitätsklinikum der RWTH Aachen, Deutschland
,
H. Saß
2   Kliniken für Psychiatrie, Universitätsklinikum der RWTH Aachen, Deutschland
,
U. Büll
1   Kliniken für Nuklearmedizin, Universitätsklinikum der RWTH Aachen, Deutschland
› Author Affiliations
Further Information

Publication History

Eingegangen: 25 June 1998

in revidierter form: 28 August 1998

Publication Date:
03 February 2018 (online)

Zusammenfassung

Ziel: In der vorliegenden Studie sollte die Akutwirkung des »Ecstasy«- Analogons MDE (3,4-Methylendioxyethamphetamin) auf den zerebralen Glukosemetabolismus (rMRGIu) gesunder Probanden untersucht werden. Methode: In einer randomisierten Doppelblindstudie wurden 16 gesunde Probanden ohne Drogenanamnese mittels 18-FDG-PET 110-120 min nach oraler Verabreichung von 2 mg/kg KG MDE (n = 8) oder Plazebo (n = 8) untersucht. Zwei Minuten vor Injektion des Radio- pharmazeutikums startend erfolgte über insgesamt 32 min eine konstante kognitive Stimulation über ein Wortrepetitionsparadigma, um konstante und vergleichbare mentale Bedingungen während der zerebralen 18-FDG-Aufnahme zu gewährleisten. Die Darstellung der Indivi- dualanatomie erfolgte anhand T1-gewichteter 3D-flash MRT mit anschließender manueller Regionalisierung in 108 Regions-of-Interest und PET/MRT Overlay. Absolute Quantifizierung der rMRGIu sowie Normierung auf den Globalmetabolismus mit anschließendem Vergleich MDE versus Plazebo mittels U-Test nach Mann und Whitney. Ergebnisse: Gegenüber der Plazebo-Gruppe fand sich unter MIDE keine signifikante Änderung der globalen MRGIu (MDE: 41,8± 11,1 μmol/min/100 g, Placebo: 50,1 ± 18,1 μmol/min/100 g, p = 0,298). Die normierten metabolischen Daten zeigten eine signifikante Minderung der rMRGIu im beidseitigen Frontalkortex: links frontal posterior (-7,1%, p <0,05) und rechts präfrontal superior (-4,6 %, p <0,05). Signifikante Steigerungen der rMIRGIu fanden sich dagegen im beidseitigen Zerebellum (rechts: + 10,1%, p <0,01; links: +7,6 %, p <0,05) sowie im rechten Putamen (+6,2%, p <0,05). Schlußfolgerung: In der vorliegenden Studie konnten unter dem Akuteinfluß des »Ecstasy«-Analogons MDE neuro- metabolische Veränderungen im Sinne einer fronto-striato-cerebellären Dysbalance nachgewiesen werden, die Parallelen zu sowohl anderen psychotropen Substanzen als auch verschiedenen endogenen Psychosen aufweisen.

Summary

Purpose: The aim of the present study was to determine the acute effects of the “Ecstasy” analogue MDE (3, 4-methylendioxyethampheta- mine) on the cerebral glucose metabolism (rMRGIu) of healthy volunteers. Method: In a randomised double-blind trial, 16 healthy volunteers without a history of drug abuse were examined with 18-FDG PET 11ΟΙ 20 minutes after oral administration of 2 mg/kg MIDE (n = 8) or placebo (n = 8). Beginning two minutes prior to radiotracer injection, a constant cognitive stimulation was maintained for 32 minutes using a word repetition paradigm in order to ensure constant and comparable mental conditions during cerebral 18-FDG uptake. Individual brain anatomy was represented using T1-weighted 3D flash MRI, followed by manual régionalisation into 108 regions-of-interest and PET/MRI overlay. Absolute quantification of rMRGIu and comparison of glucose metabolism under MDE versus placebo were performed using Mann-Whitney U-test. Results: Absolute global MIRGIu was not significantly changed under MDE versus placebo (MDE: 41,8 ± 11,1 μmol/min/100 g, placebo: 50,1 ± 18,1 μmol/min/100 g, p = 0,298). The normalised regional metabolic data showed a significantly decreased rMRGIu in the bilateral frontal cortex: left frontal posterior (-7.1 %, p <0.05) and right prefrontal superior (-4.6%, p <0.05). On the other hand, rMRGIu was significantly increased in the bilateral cerebellum (right: +10.1 %, p <0.05; left: +7.6%, p <0.05) and in the right putamen (+6.2%, p <0.05). Conclusions: The present study revealed acute neurometabolic changes under the “Ecstasy” analogon MDE indicating a fronto-striato-cerebellar dysbalance with parallels to other psychotropic substances and various endogenous psychoses respectively.

 
  • Literatur

  • 1 Allen G, Buxton RB, Wong EC, Courchesne E. Attentional activation of the cerebellum independent of motor involvement. Science 1997; 275: 1940-3.
  • 2 Andreasen NC, O‘Leary DS, Cizadlo T, Arndt S, Rezai K, Boles Ponto LS, Watkins GL, Hichwa RD. Schizophrenia and cognitive dysmetria: A positron-emission tomography study of dysfunctional prefrontal-thala- mic-cerebellar circuitry. Proc Natl Acad Sei 1996; 93: 9985-90.
  • 3 Barinaga M. The cerebellum: movement ccordinator or much more?. Science 1996; 272: 482-3.
  • 4 Barker WW, Yoshii F, Loewenstein DA, Chang JY, Apicella A, Pascal S, Boothe TE, Ginsberg MD, Duara R. Cerebrocerebellar relationship during behavioral activation: a PET study. J Cereb Blood Flow Metab 1991; 11: 48-54.
  • 5 Bartlett EJ, Brodie JD, Wolf AP, Christman DR, Laska E, Meissner M. Reproducibility of cerebral glucose metabolic measurements in resting human subjects. J Cereb Blood Flow Metab 1988; 8: 502-12.
  • 6 Battaglia G, Brooks BP, Kulsakdinum C, DeSouza EB. Pharmacologic profile of MDMA (3,4-methylenedioxymethamphetamine) at various brain recognition sites. Eur J Pharmacol 1988; 149: 159-63.
  • 7 Biver F, Goldmann S, Delvenne V, Luxen A, De-Martelaer V, Hubain P, Mendlewicz J, Lotstra F. Frontal and parietal metabolic disturbances in unipolar depression. Biol Psychiatry 1994; 36: 381-8.
  • 8 Bortz J. Statistik für Sozialwissenschaftler.. 4. Aufl. Berlin – Heidelberg – New York: Springer Verlag; 1993
  • 9 Brodie JD, Christman DR, Corona JF, Fowler JS, Gomez-Mont F, Jaeger J, Micheels PA, Rotrosen J, Rüssel JA, Volkow ND. Patterns of metabolic activity in the treatment of schizophrenia. Ann Neurol 1984; 15: 166-9.
  • 10 Catafau AM, Parellada E, Lomena FJ, Bernardo M, Pavia J, Ros D, Setoain J, Gonzales-Mondus E. Prefrontal and temporal blood flow in schizophrenia. J Nucl Med 1994; 35: 935-41.
  • 11 Cleghorn JM, Garnett ES, Nahmias C, Firnau G, Brown GM, Kaplan R, Szechtman H, Szechtman B. Increased frontal and reduced parietal glucose metabolism in acute untreated schizophrenia. Psychiatry Res 1989; 28: 119-33.
  • 12 Daniel DG, Weinberger DR, Jones DW, Zigun JR, Coppola R, Handel S, Bigelow LB, Goldberg TE, Berman KF, Kleinman JE. The effect of amphetamine on regional cerebral blood flow during cognitive activation in schizophrenia. J Neurosci 1991; 11: 1907-17.
  • 13 Fox PT, Mintun MA, Reiman EM, Raichle ME. Enhanced detection of focal brain responses using intersubject averaging and change-distribution analysis of subtracted PET images. J Cereb Blood Flow Metab 1988; 8: 642-53.
  • 14 Gouzoulis-Mayfrank E, Hermle L, Kovar KA, Saß H. Die Entaktogene »Ecstasy« (MDMA), »Eve« (MDE) und andere ringsubstituierte Methamphetaminderivate. Nervenarzt 1996; 67: 369-80.
  • 15 Gouzoulis-Mayfrank E, Schreckenberger M, Sabri O, Arning C, Thelen B, Spitzer M, Kovar K-A, Büll U, Saß H. Neurometabolic effects of 3,4-methylenedioxyethylamphetamine (MDE), psilocybin and d-metham- phetamine in healthy volunteers. Neuropsychopharmacology: in press..
  • 16 Henry JA, Jeffreys KJ, Dawling S. Toxicity and deaths from 3,4-methylenedioxymethamphetamine. Lancet 1992; 340: 384-7.
  • 17 Herholz K, Pietrzyk U, Karbe H, Wuerker M, Wienhard K, Heiss W-D. Individual metabolic anatomy of repeating words demonstrated by MRI-guided positron emission tomography. Neurosci Lett 1994; 182: 47-50.
  • 18 Hermle L, Spitzer M, Borchardt D, Kovar KA, Gouzoulis E. Psychological effects of MDE in normal subjects. Are entactogens a new class of psychoactive agents?. Neuropsychopharmacology 1993; 8: 171-6.
  • 19 Kaiser HJ, Sabri O, Wagenknecht G. et al. A method of correlating and merging cerebral morphology and function by a special head holder. Nuklearmedizin 1994; 33: 123-6.
  • 20 Lewis SW, Ford RA, Syed GM, Reveley AM, Toone BU. A controlled study of TC-99m-HMPAO single photon emission imaging in chronic schizophrenia. Psychol Med 1992; 22: 27-35.
  • 21 London ED, Broussole EPM, Links JM, Wong DF, Cascella NG, Dannais RF, Sano M, Herning R, Snyder FR, Rippetoe LR, Toung TJK, Jaffe JH, Wagner HN. Morphine-induced metabolic changes in human brain: studies with positron emission tomography and fluorine 18 fluorodeoxyglucose. Arch Gen Psychiatry. 1990: 73-81.
  • 22 Maquet P, Dive D, Salmon E, von Frenckel R, Franck G. Reproducibility of cerebral glucose utilization measured by PET and the (18F)-2-fluoro-2-deoxy-d-glucose method in resting, healthy human subjects. Eur J Nucl Med 1990; 16: 267-73.
  • 23 Mazoyer BM, Tzourio N, Frak V, Syrota A, Murayama N, Levrier O, Salamon G, Dehaene S, Cohen L, Mehler J. The cortical representation of speech. J Cogn Neurosci 1993; 5: 467-79.
  • 24 Nichols DE. Differences between the mechanism of action of MDMA, MBDB, and the classic hallucinogens. Identification of a new therapeutic class: entactogens. J Psychoactive drugs 1986; 18: 305-313.
  • 25 Pearlson GD, Jeffery PJ, Harris GJ, Ross CA, Fischman MW, Camargo EE. Correlation of acute cocaine-induced changes in local cerebral blood flow with subjective effects. Am J Psychiatry 1993; 150: 495-7.
  • 26 Phelps HE, Huang SC, Hoffmann EJ, Selin C, Sokoloff L. Kühl DE. Tomographic measurement of local cerebral glucose metabolic rate in humans with (F-18) 2-fluoro-2-deoxyglucose: validation of a method. Ann Neurol 1979; 6: 371-88.
  • 27 Pietrzyk U, Herholz K, Fink G, Jacobs A, Mielke R, Slansky I, Wuerker M, Heiss WD. An interactive technique for three-dimensional image registration: validation for PET, SPECT, MRI and CT brain studies. J Nucl Med 1994; 35: 2011-8.
  • 28 Reiman EM, Lane RD, Ahern GL, Schwartz GE, Davidson RJ, Friston KJ, Yun LS, Chen K. Neuroanatomical correlates of externally and internally generated human emotion. Am J Psychiatry 1997; 154: 918-25.
  • 29 Reivich M, Alavi A, Wolf AP. et al. Glucose metabolic rate kinetic model parameter determination in man: the lumped constant and rate constants for (18-F) fluorodeoxyglucose and (11-C) deoxyglucose. J Cereb Blood Flow Metab 1985; 5: 179-92.
  • 30 Ricaurte GA, Martello AL, Katz JL, Martello MB. Lasting effects of MDMA on central serotonergic neurons in non-human primates: neurochemical observations. J Pharmacol Exp Ther 1992; 261: 616-22.
  • 31 Ruoff A. Häufigkeitswörterbuch gesprochener Sprache. 2nd edition Tübingen: Max Niemeyer Verlag; 1990
  • 32 Sabri O, Erkwoh R, Schreckenberger M, Cremerius U, Schulz G, Dickmann C, Kaiser HJ, Steinmeyer EM, Sass H, Buell U. Regional cerebral blood flow and negative/positive symptoms in 24 drug-naive schizophrenics. J Nucl Med 1997; 38: 181-8.
  • 33 Sabri O, Erkwoh R, Schreckenberger M, Owega A, Sass H, Buell U. Correlation of positive symptoms exclusively to hyperperfusion or hypoperfusion of cerebral cortex in never-treated schizophrenics. Lancet 1997; 349: 1735-9.
  • 34 Schreckenberger M, Gouzoulis-Mayfrank E, Sabri O, Arning C, Schulz G, Tuttass T, Wagenknecht G, Kaiser HJ, Sass H, Buell U. Cerebral interregional correlations of associative language processing: a PET activation study using 18-FDG. Eur J Nucl Med: in press..
  • 35 Sokoloff L, Reivich M, Kennedy C. et al. The C-14-deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure and normal values in the conscious and anaesthesized albino rat. J Neurochem 1977; 28: 897-916.
  • 36 Szukaj M. MDMA («Ecstasy«) – gefährliche Droge oder Psychotherapeutikum?. Nervenarzt 1994; 64: 802-5.
  • 37 Talairach J, Tournoux P. Co-planar stereotactic atlas of the human brain. Stuttgart: Thieme; 1988
  • 38 Volkow ND, Gillespie H, Mullani N, Tancredi L, Grant C, Ivanovic M, Hollister L. Cerebellar metabolic activation by delta- 9-tetrahydrocannabinol in human brain: a study with positron emission tomography and 18F-2-Fluoro-deoxyglucose. Psychiatry Res Neuroimag 1991; 40: 69-78.
  • 39 Vollenweider FX, Leenders KL, Scharfetter C, Maguire P, Stadelmann O, Angst J. Positron emission tomography and fluorodeoxyglucose studies of metabolic hyperfrontality and psychopathology in the psilocybin model of psychosis. Neuropsychopharmacology 1997; 16: 357-72.
  • 40 Wolkin A, Angrist B, Wolf A, Brodie J, Wolkin B, Laeger J, Canero R, Rotrosen J. Effects of amphetamine on local cerebral metabolism in normal and schizophrenic subjects as determined by positron emission tomography. Psychopharmacology 1987; 92: 241-6.