Nervenheilkunde 2005; 24(02): 113-119
DOI: 10.1055/s-0038-1629942
Original Article
Schattauer GmbH

Aktuelle Entwicklungen der strukturellen MRT zur Frühdiagnostik der Alzheimer-Demenz

Update of structural MRI-based methods for the early detection of Alzheimer’s disease
M. Ewers
1   Alzheimer Gedächtniszentrum und Referenzzentrum Morphometrie im Kompetenznetz Demenzen, Klinik für Psychiatrie und Psychotherapie, Ludwig Maximilian Universität, München
,
S. J. Teipel
1   Alzheimer Gedächtniszentrum und Referenzzentrum Morphometrie im Kompetenznetz Demenzen, Klinik für Psychiatrie und Psychotherapie, Ludwig Maximilian Universität, München
,
H. Hampel
1   Alzheimer Gedächtniszentrum und Referenzzentrum Morphometrie im Kompetenznetz Demenzen, Klinik für Psychiatrie und Psychotherapie, Ludwig Maximilian Universität, München
› Author Affiliations
Further Information

Publication History

Eingegangen am: 15 November 2004

angenommen nach Revision am: 16 December 2004

Publication Date:
30 January 2018 (online)

Zusammenfassung

Die Magnetresonanztomographie(MRT)-basierte Volumetrie bietet in vivo Verfahren für die Detektion der Atrophie in den Anfangsstadien der Alzheimer-Krankheit (AD) und stellt potenziell eine geeignete Methode für die klinische Früherkennung und Untersuchung des Krankheitsverlaufs dar. Das Gros der volumetrischen Studien berichtete signifikante Volumenverluste bereits in prädemenziellen Stadien der AD. Die manuelle Volumetrie ist allerdings durch einen hohen Zeitaufwand und die Festlegung auf a priori ausgewählte Gehirnregionen hinsichtlich der klinischen Relevanz limitiert. In den letzten Jahren ist eine Vielzahl automatischer Verfahren zur Volumetrie einzelner Gehirnstrukturen und der Detektierung von Atrophiemustern im Gesamtgehirn entwickelt worden, die Gegenstand der vorliegenden Übersichtsarbeit sind. Ergebnisse semi-automatischer Hippokampus-Volumetrie konnten erfolgreich die Befunde manueller Volumetrie replizieren. Mittels Voxelbasierter Morphometrie und hochparametrischer Fluidregistrierung konnten krankheitsspezifische Atrophiemuster im Gesamthirn sichtbar gemacht werden. Die Bestimmung von Atrophiemustern ist besonders aus differenzialdiagnostischer Perspektive interessant, bedarf aber noch einer klinischen Validierung.

Summary

The development of biomarkers for the early detection is currently a major focus in clinical research on Alzheimer’s disease. Magnetic resonance imaging (MRI) based approaches may be useful to detect early diseasespecific neurodegeneration and thus may aid in the clinical detection of Alzheimer’s disease. Manual delineation of brain regions selected a priori such as the hippocampus, shows high sensitivity for AD but is limited in its clinical applicability due to being time-consuming and susceptible to inter- and intrarater variability. Therefore, recent research efforts have focused on automatic methods, resulting in a plethora of new methods. These state-of-the-art methods are the focus of the present review. Semi-automatic volumetric measures for the hippocampus are now available, but remain partially dependent on manual identification of anatomical landmarks. New voxel-based methods provide for the first time the possibility to explore local atrophic processes within the whole brain. On the basis of voxel-based morphometry disease-specific atrophy patterns have been successfully detected in AD. High-dimensional fluid registration allows to detect subtle atrophic changes within the brain. Voxel-based methods however still require the development of clinical diagnostic criteria and warrant further assessment of the clinical utility.

 
  • Literatur

  • 1 McKhann G. et al. Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology 1984; 34: 939-44.
  • 2 Zamrini E, De Santi S, Tolar M. Imaging is superior to cognitive testing for early diagnosis of Alzheimer’s disease. Neurobiol Aging 2004; 25: 685-91.
  • 3 Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathologica 1991; 2: 239-59.
  • 4 Wilcock GK, Esiri MM. Plaques, tangles and dementia. A quantitative study. Journal of the Neurological Sciences 1982; 56: 343-56.
  • 5 Braak H, Braak E. Staging of Alzheimer’s disease-related neurofibrillary changes. Neurobiol Aging 1995; 16: 271-8 discussion 278-84.
  • 6 Braak H, Braak E. Diagnostic criteria for neuropathologic assessment of Alzheimer’s disease. Neurobiol Aging 1997; 18 (Suppl. 04) S85-8.
  • 7 Zakzanis KK, Graham SJ, Campbell Z. A metaanalysis of structural and functional brain imaging in dementia of the Alzheimer’s type: a neuroimaging profile. Neuropsychol Rev 2003; 13: 1-18.
  • 8 Juottonen K. et al. Comparative MR Analysis of the Entorhinal Cortex and Hippocampus in Diagnosing Alzheimer Disease. AJNR Am J Neuroradiol 1999; 20: 139-44.
  • 9 Dickerson BC. et al. MRI-derived entorhinal and hippocampal atrophy in incipient and very mild Alzheimer’s disease. Neurobiology of Aging 2001; 22: 747-54.
  • 10 Killiany RJ. et al. MRI measures of entorhinal cortex vs hippocampus in preclinical AD. Neurology 2002; 58: 1188-96.
  • 11 Price JL. et al. Neuron number in the entorhinal cortex and CA1 in preclinical Alzheimer disease. Arch Neurol 2001; 58: 1395-402.
  • 12 Teipel SJ. et al. Regional pattern of hippocampus and corpus callosum atrophy in Alzheimer’s disease in relation to dementia severity: evidence for early neocortical degeneration. Neurobiol Aging 2003; 24: 85-94.
  • 13 Teipel SJ. et al. Progression of corpus callosum atrophy in Alzheimer disease. Arch Neurol 2002; 59: 243-8.
  • 14 Teipel SJ. et al. Dissociation between corpus callosum atrophy and white matter pathology in Alzheimer’s disease. Neurology 1998; 51: 1381-5.
  • 15 Hampel H. et al. Corpus callosum atrophy is a possible indicator of region- and cell typespecific neuronal degeneration in Alzheimer disease: a magnetic resonance imaging analysis. Arch Neurol 1998; 55: 193-8.
  • 16 Murphy DG. et al. Volumetric magnetic resonance imaging in men with dementia of the Alzheimer type: correlations with disease severity. Biological Psychiatry 1993; 34: 612-21.
  • 17 DeCarli C. et al. Discriminant analysis of MRI measures as a method to determine the presence of dementia of the Alzheimer type. Psychiatry Research 1995; 57: 119-30.
  • 18 Tanna NK. et al. Analysis of brain and cerebrospinal fluid volumes with MR imaging: impact on PET Data correction. Radiology 1991; 178: 123-30.
  • 19 Alavi A. et al. Quantitative analysis of PET and MRI data in normal aging and Alzheimer’s disease: atrophy weighted total brain metabolism and absolute whole brain metabolism as reliable discriminators. J Nucl Med 1993; 34: 1681-7.
  • 20 Pearlson GD. et al. Quantitative changes in mesial temporal volume, regional cerebral blood flow, and cognition in Alzheimer’s disease. Arch Gen Psychiatry 1992; 49: 402-8.
  • 21 Seab JP. et al. Quantitative NMR measurements of hippocampal atrophy in Alzheimer’s disease. Magnetic Resonance in Medicine 1988; 8: 200-8.
  • 22 Freeborough PA, Fox NC. Modeling brain deformations in Alzheimer disease by fluid registration of serial 3D MR images. J Comput Assist Tomogr 1998; 22: 838-43.
  • 23 Crum WR, Scahill RI, Fox NC. Automated hippocampal segmentation by regional fluid registration of serial MRI: validation and application in Alzheimer’s disease. Neuroimage 2001; 13: 847-55.
  • 24 Grenander U, Miller MI. Computational anatomy: An emerging discipline. Quarterly of Applied Mathematics 1998; 65: 617-94.
  • 25 Csernansky JG. et al. Early DAT is distinguished from aging by high-dimensional mapping of the hippocampus. Dementia of the Alzheimer type. Neurology 2000; 55: 1636-43.
  • 26 Wang L. et al. Changes in hippocampal volume and shape across time distinguish dementia of the Alzheimer type from healthy aging. Neuroimage 2003; 20: 667-82.
  • 27 Haller JW. et al. Three-dimensional hippocampal MR morphometry with high-dimensional transformation of a neuroanatomic atlas. Radiology 1997; 202: 504-10.
  • 28 Ashburner J, Friston KJ. Voxel-based morphometry – the methods. NeuroImage 2000; 11: 805-21.
  • 29 Chetelat G, Baron JC. Early diagnosis of Alzheimer’s disease: contribution of structural neuroimaging. Neuroimage 2003; 18: 525-41.
  • 30 Baron JC. et al. In vivo mapping of gray matter loss with voxel-based morphometry in mild Alzheimer’s disease. Neuroimage 2001; 14: 298-309.
  • 31 Frisoni GB. et al. Detection of grey matter loss in mild Alzheimer’s disease with voxel based morphometry. J Neurol Neurosurg Psychiatry 2002; 73: 657-64.
  • 32 Rombouts SA. et al. Unbiased whole-brain analysis of gray matter loss in Alzheimer’s disease. Neurosci Lett 2000; 285: 231-3.
  • 33 Chetelat G. et al. Mapping gray matter loss with voxel-based morphometry in mild cognitive impairment. Neuroreport 2002; 13: 1939-43.
  • 34 Karas GB. et al. Global and local gray matter loss in mild cognitive impairment and Alzheimer’s disease. Neuroimage 2004; 23: 708-16.
  • 35 Teipel SJ. et al. Age-related cortical grey matter reductions in non-demented Down’s syndrome adults determined by MRI with voxel-based morphometry. Brain 2004; 127: 811-24.
  • 36 Bookstein FL. »Voxel-based morphometry« should not be used with imperfectly registered images. Neuroimage 2001; 14: 1454-62.
  • 37 Christensen GE, Rabbitt RD, Miller MI. Deformable templates using large deformation kinetics. IEEE Trans Med Imaging 1996; 5: 1435-47.
  • 38 Fox NC. et al. Imaging of onset and progression of Alzheimer’s disease with voxel-compression mapping of serial magnetic resonance images. The Lancet 2001; 358: 201-5.
  • 39 Scahill RI. et al. Mapping the evolution of regional atrophy in Alzheimer’s disease: unbiased analysis of fluid-registered serial MRI. Proc Natl Acad Sci USA 2002; 99: 4703-7.
  • 40 Thompson PM. et al. Cortical change in Alzheimer’s disease detected with a disease-specific population-based brain atlas. Cereb Cortex 2001; 11: 1-16.
  • 41 Thompson PM. et al. Dynamics of gray matter loss in Alzheimer’s disease. J Neurosci 2003; 23: 994-1005.