Nervenheilkunde 2013; 32(07): 485-492
DOI: 10.1055/s-0038-1628522
Neuroradiologie
Schattauer GmbH

7-Tesla-MRT in der Neuroradiologie

Möglichkeiten und Perspektiven7 Tesla MRI for neuroradiological applicationsPossibilities and perspectives
C. Mönninghoff
1   Institut für Diagnostische und Interventionelle Radiologie und Neuroradiologie, Universitätsklinikum Essen, Universität Duisburg-Essen; Erwin L. Hahn Institute for Magnetic Resonance Imaging, Universität Duisburg-Essen
,
M. E. Ladd
1   Institut für Diagnostische und Interventionelle Radiologie und Neuroradiologie, Universitätsklinikum Essen, Universität Duisburg-Essen; Erwin L. Hahn Institute for Magnetic Resonance Imaging, Universität Duisburg-Essen
,
M. Forsting
1   Institut für Diagnostische und Interventionelle Radiologie und Neuroradiologie, Universitätsklinikum Essen, Universität Duisburg-Essen; Erwin L. Hahn Institute for Magnetic Resonance Imaging, Universität Duisburg-Essen
› Author Affiliations
Further Information

Publication History

eingegangen am: 14 February 2013

angenommen am: 04 March 2013

Publication Date:
24 January 2018 (online)

Zusammenfassung

Seit Einführung der 7 Tesla (7 T) Ultrahochfeld-MRT (UHF-MRT) in die klinische Forschung werden ihre Anwendungsmöglichkeiten für die neuroradiologische Diagnostik evaluiert. Die 7 T MRT ermöglicht eine Verbesserung der strukturellen und funktionellen Bildgebung aufgrund ihres hohen Signalzu-Rausch-Verhältnisses, der erzielbaren räumlichen Auflösung und ihrer hohen Sensitivität für Suszeptibilitätsartefakte. Akquisitionszeit und Bildqualität erleiden jedoch Verluste durch lokale Magnetfeldinhomogenitäten und die Parameterwahl und Schichtanzahl werden aufgrund der höheren Energiedeposition im Gewebe negativ beeinflusst. Neben den technischen Grundlagen der 7 T UHF-MRT werden neuroradiologische Anwendungsmöglichkeiten bei Hirntumoren, entzündlichen und degenerativen ZNS-Erkrankungen, Epilepsie sowie zerebrovaskulären Erkrankungen aufgezeigt und Möglichkeiten der MR-Spektroskopie, funktionelle MRT und MR-Angiografie betrachtet. Bis zur Einführung der 7 T MRT in die klinische Diagnostik werden Optimierungen von Hard-und Software sowie klinische Studien notwendig sein, um ihre Vorteile für die neuroradiologische Diagnostik bestmöglich nutzen zu können.

Summary

Since the introduction of 7 Tesla (7 T) ultrahigh-field MRI (UHF MRI) into clinical research, its applications for neuroradiological diagnostics are being evaluated. 7 T MRI allows an improvement in structural and functional neuroimaging due to its high signal-to-noise ratio combined with high spatial resolution and sensitivity for susceptibility effects. However, acquisition time and image quality suffer from local inhomogeneities of the magnetic field and the number of slices and choice of sequence parameters is negatively affected by higher energy deposition in the tissue compared to lower field strengths. In addition to the technical fundamentals of 7 T UHF MRI, neuroradiological applications are presented regarding brain tumours, inflammatory and degenerative diseases of the CNS, epilepsy, and cerebrovascular diseases. 7 T MR spectroscopy, functional MRI, and MR angiography are described. Before 7 T MRI can be introduced into clinical diagnostics, further technical adaptations of hardware and software as well as additional research are needed to optimize its practical value for neuroradiological diagnostics.

 
  • Literatur

  • 1 Baudendistel KT, Heverhagen JT, Knopp MV. Clinical MR at 3 Tesla: current status. Radiologe 2004; 44 (01) 11-8.
  • 2 Moser E, Trattnig S. 3.0 Tesla MR systems. Invest Radiol 2003; 38 (07) 375-6.
  • 3 Ugurbil K. et al. Ultrahigh field magnetic resonance imaging and spectroscopy. Magn Reson Imaging 2003; 21 (10) 1263-81.
  • 4 Robitaille PM. et al. Human magnetic resonance imaging at 8 T. NMR Biomed 1998; 11 (06) 263-5.
  • 5 Moser E, Stahlberg F, Ladd ME, Trattnig S. 7-T MR--from research to clinical applications?. NMR Biomed 2012; 25 (05) 695-716.
  • 6 Avdievich NI, Hetherington HP, Kuznetsov AM, Pan JW. 7T head volume coils: improvements for rostral brain imaging. J Magn Reson Imaging 2009; 29 (02) 461-5.
  • 7 Wu B. et al. 7T human spine imaging arrays with adjustable inductive decoupling. IEEE Trans Biomed Eng 2010; 57 (02) 397-403.
  • 8 Van de Moortele PF. et al. B(1) destructive interferences and spatial phase patterns at 7 T with a head transceiver array coil. Magn Reson Med 2005; 54 (06) 1503-18.
  • 9 Wrede KH. et al. Caudal image contrast inversion in MPRAGE at 7 Tesla: problem and solution. Acad Radiol 2012; 19 (02) 172-8.
  • 10 Kraff O. et al. An eight-channel phased array RF coil for spine MR imaging at 7 T. Invest Radiol 2009; 44 (11) 734-40.
  • 11 Sigmund EE. et al. High-resolution human cervical spinal cord imaging at 7 T. NMR Biomed 2012; 25 (07) 891-9.
  • 12 Theysohn JM. et al. Subjective acceptance of 7 Tesla MRI for human imaging. MAGMA 2008; 21 1-2 63-72.
  • 13 Schlamann M. et al. Exposure to high-field MRI does not affect cognitive function. J Magn Reson Imaging 2010; 31 (05) 1061-6.
  • 14 de Vocht F. et al. Cognitive effects of head-movements in stray fields generated by a 7 Tesla wholebody MRI magnet. Bioelectromagnetics 2007; 28 (04) 247-55.
  • 15 Hoyer C. et al. Repetitive exposure to a 7 Tesla static magnetic field of mice in utero does not cause alterations in basal emotional and cognitive behavior in adulthood. Reprod Toxicol 2012; 34 (01) 86-92.
  • 16 Yuh WT. et al. Clinical magnetic resonance imaging of brain tumors at ultrahigh field: a state-ofthe-art review. Top Magn Reson Imaging 2006; 17 (02) 53-61.
  • 17 Dammann P. et al. Evaluation of hardware-related geometrical distortion in structural MRI at 7 Tesla for image-guided applications in neurosurgery. Acad Radiol 2011; 18 (07) 910-6.
  • 18 Hurley A. et al. Tailored RF pulse for magnetization inversion at ultrahigh field. Magn Reson Med 2010; 63 (01) 51-8.
  • 19 Ibrahim TS. Ultrahigh-field MRI whole-slice and localized RF field excitations using the same RF transmit array. IEEE Trans Med Imaging 2006; 25 (10) 1341-7.
  • 20 Schick F. Whole-body MRI at high field: technical limits and clinical potential. Eur Radiol 2005; 15 (05) 946-59.
  • 21 Hoult DI, Phil D. Sensitivity and power deposition in a high-field imaging experiment. J Magn Reson Imaging 2000; 12 (01) 46-67.
  • 22 Tang L, Hue YK, Ibrahim TS. Studies of RF Shimming Techniques with Minimization of RF Power Deposition and Their Associated Temperature Changes. Concepts Magn Reson Part B Magn Reson Eng 2011; 39B (01) 11-25.
  • 23 Pan JW, Lo KM, Hetherington HP. Role of very high order and degree B0 shimming for spectroscopic imaging of the human brain at 7 tesla. Magn Reson Med 2012; 68 (04) 1007-17.
  • 24 Setsompop K. et al. High-flip-angle slice-selective parallel RF transmission with 8 channels at 7 T. J Magn Reson 2008; 195 (01) 76-84.
  • 25 Katscher U, Bornert P. Parallel RF transmission in MRI. NMR Biomed 2006; 19 (03) 393-400.
  • 26 Helm L. Optimization of gadolinium-based MRI contrast agents for high magnetic-field applications. Future Med Chem 2010; 02 (03) 385-96.
  • 27 Christoforidis GA. et al. High resolution ultra high field magnetic resonance imaging of glioma microvascularity and hypoxia using ultra-small particles of iron oxide. Invest Radiol 2009; 44 (07) 375-83.
  • 28 Moenninghoff C. et al. Imaging of adult astrocytic brain tumours with 7 T MRI: preliminary results. Eur Radiol 2010; 20 (03) 704-13.
  • 29 Moenninghoff C. et al. Assessing a dysplastic cerebellar gangliocytoma (Lhermitte-Duclos disease) with 7T MR imaging. Korean J Radiol 2010; 11 (02) 244-8.
  • 30 Christoforidis GA. et al. Susceptibility-based imaging of glioblastoma microvascularity at 8 T: correlation of MR imaging and postmortem pathology. AJNR Am J Neuroradiol 2004; 25 (05) 756-60.
  • 31 Christoforidis GA. et al. Visualization of microvascularity in glioblastoma multiforme with 8-T highspatial-resolution MR imaging. AJNR Am J Neuroradiol 2002; 23 (09) 1553-6.
  • 32 Christoforidis GA. et al. “Tumoral pseudoblush” identified within gliomas at high-spatial-resolution ultrahigh-field-strength gradient-echo MR imaging corresponds to microvascularity at stereotactic biopsy. Radiology 2012; 264 (01) 210-7.
  • 33 Lupo JM. et al. 7-Tesla susceptibility-weighted imaging to assess the effects of radiotherapy on normal-appearing brain in patients with glioma. Int J Radiat Oncol Biol Phys 2012; 82 (03) e493-500.
  • 34 Monninghoff C. et al. Imaging of brain metastases of bronchial carcinomas with 7 T MRI – initial results. Rofo 2010; 182 (09) 764-72.
  • 35 Maderwald S. et al. To TOF or not to TOF: strategies for non-contrast-enhanced intracranial MRA at 7 T. MAGMA 2008; 21 1-2 159-67.
  • 36 Heverhagen JT, Bourekas E, Sammet S, Knopp MV, Schmalbrock P. Time-of-flight magnetic resonance angiography at 7 Tesla. Invest Radiol 2008; 43 (08) 568-73.
  • 37 Kang CK. et al. Imaging and analysis of lenticulostriate arteries using 7.0-Tesla magnetic resonance angiography. Magn Reson Med 2009; 61 (01) 136-44.
  • 38 Cho ZH. et al. Observation of the lenticulostriate arteries in the human brain in vivo using 7.0T MR angiography. Stroke 2008; 39 (05) 1604-6.
  • 39 Conijn MM. et al. Perforating arteries originating from the posterior communicating artery: a 7.0-Tesla MRI study. Eur Radiol 2009; 19 (12) 2986-92.
  • 40 Kang CK. et al. Hypertension correlates with lenticulostriate arteries visualized by 7T magnetic resonance angiography. Hypertension 2009; 54 (05) 1050-6.
  • 41 Madai V. et al. Ultrahigh-field MRI in human ischemic stroke – a 7 Tesla study. PLoS One 2012; 07 (05) e37631.
  • 42 van der Kolk AG. et al. Intracranial vessel wall imaging at 7.0-T MRI. Stroke 2011; 42 (09) 2478-84.
  • 43 Novak V. et al. Ultra high field MRI at 8 Tesla of subacute hemorrhagic stroke. J Comput Assist Tomogr 2001; 25 (03) 431-5.
  • 44 Schmitter S. et al. Contrast enhancement in TOF cerebral angiography at 7 T using saturation and MT pulses under SAR constraints: impact of VERSE and sparse pulses. Magn Reson Med 2012; 68 (01) 188-97.
  • 45 Johst S, Wrede KH, Ladd ME, Maderwald S. Timeof-flight magnetic resonance angiography at 7 T using venous saturation pulses with reduced flip angles. Invest Radiol 2012; 47 (08) 445-50.
  • 46 Monninghoff C. et al. Evaluation of intracranial aneurysms with 7 T versus 1.5 T time-of-flight MR angiography – initial experience. Rofo 2009; 181 (01) 16-23.
  • 47 Monninghoff C, Maderwald S, Wanke I. Pre-interventional assessment of a vertebrobasilar aneurysm with 7 tesla time-of-flight MR angiography. Rofo 2009; 181 (03) 266-8.
  • 48 Schlamann M. et al. Cerebral cavernous hemangiomas at 7 Tesla: initial experience. Acad Radiol 2010; 17 (01) 3-6.
  • 49 Dammann P. et al. The venous angioarchitecture of sporadic cerebral cavernous malformations: a susceptibility weighted imaging study at 7 T MRI. J Neurol Neurosurg Psychiatry 2013; 84 (02) 194-200.
  • 50 Theysohn JM. et al. The human hippocampus at 7 T – in vivo MRI. Hippocampus 2009; 19 (01) 1-7.
  • 51 Grams AE. et al. Magnetic Resonance Imaging of Cranial Nerves at 7 Tesla. Clin Neuroradiol. 2012 Sep 27; E-pub ahead of print.
  • 52 Henry TR. et al. Hippocampal sclerosis in temporal lobe epilepsy: findings at 7 T(1). Radiology 2011; 261 (01) 199-209.
  • 53 Breyer T. et al. Imaging of patients with hippocampal sclerosis at 7 Tesla: initial results. Acad Radiol 2010; 17 (04) 421-6.
  • 54 Kerl HU. et al. The subthalamic nucleus at 7.0 Tesla: evaluation of sequence and orientation for deep-brain stimulation. Acta Neurochir (Wien) 2012; 154 (11) 2051-62.
  • 55 Abosch A, Yacoub E, Ugurbil K, Harel N. An assessment of current brain targets for deep brain stimulation surgery with susceptibility-weighted imaging at 7 tesla. Neurosurgery 2010; 67 (06) 1745-56.
  • 56 Cho ZH. et al. Direct visualization of deep brain stimulation targets in Parkinson disease with the use of 7-tesla magnetic resonance imaging. J Neurosurg 2010; 113 (03) 639-47.
  • 57 Kwon DH. et al. Seven-Tesla magnetic resonance images of the substantia nigra in Parkinson disease. Ann Neurol 2012; 71 (02) 267-77.
  • 58 Kwan JY. et al. Iron accumulation in deep cortical layers accounts for MRI signal abnormalities in ALS: correlating 7 tesla MRI and pathology. PLoS One 2012; 07 (04) e35241.
  • 59 Theysohn JM. et al. 7 tesla MRI of microbleeds and white matter lesions as seen in vascular dementia. J Magn Reson Imaging 2011; 33 (04) 782-91.
  • 60 Polman CH. et al. Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann Neurol 2011; 69 (02) 292-302.
  • 61 Sicotte NL. et al. Comparison of multiple sclerosis lesions at 1.5 and 3.0 Tesla. Invest Radiol 2003; 38 (07) 423-7.
  • 62 Simon B. et al. Improved in vivo detection of cortical lesions in multiple sclerosis using double inversion recovery MR imaging at 3 Tesla. Eur Radiol 2010; 20 (07) 1675-83.
  • 63 Mainero C. et al. In vivo imaging of cortical pathology in multiple sclerosis using ultra-high field MRI. Neurology 2009; 73 (12) 941-8.
  • 64 Kollia K. et al. First clinical study on ultra-highfield MR imaging in patients with multiple sclerosis: comparison of 1.5T and 7T. AJNR Am J Neuroradiol 2009; 30 (04) 699-702.
  • 65 Sinnecker T. et al. Multiple sclerosis lesions and irreversible brain tissue damage: a comparative ultrahigh-field strength magnetic resonance imaging study. Arch Neurol 2012; 69 (06) 739-45.
  • 66 Metcalf M. et al. High-resolution phased-array MRI of the human brain at 7 tesla: initial experience in multiple sclerosis patients. J Neuroimaging 2010; 20 (02) 141-7.
  • 67 Tallantyre EC. et al. 3 Tesla and 7 Tesla MRI of multiple sclerosis cortical lesions. J Magn Reson Imaging 2010; 32 (04) 971-7.
  • 68 de Graaf WL. et al. Clinical application of multicontrast 7-T MR imaging in multiple sclerosis: increased lesion detection compared to 3 T confined to grey matter. Eur Radiol 2013; 23 (02) 528-40.
  • 69 Wattjes MP. et al. Does high field MRI allow an earlier diagnosis of multiple sclerosis?. J Neurol 2008; 255 (08) 1159-63.
  • 70 Tallantyre EC. et al. Demonstrating the perivascular distribution of MS lesions in vivo with 7-Tesla MRI. Neurology 2008; 70 (22) 2076-8.
  • 71 Ge Y, Zohrabian VM, Grossman RI. Seven-Tesla magnetic resonance imaging: new vision of microvascular abnormalities in multiple sclerosis. Arch Neurol 2008; 65 (06) 812-6.
  • 72 Sinnecker T. et al. Periventricular venous density in multiple sclerosis is inversely associated with T2 lesion count: a 7 Tesla MRI study. Mult Scler. 2012 Jun 26; E-Pub ahead of print.
  • 73 Hammond KE. et al. Quantitative in vivo magnetic resonance imaging of multiple sclerosis at 7 Tesla with sensitivity to iron. Ann Neurol 2008; 64 (06) 707-13.
  • 74 Wuerfel J. et al. Lesion morphology at 7 Tesla MRI differentiates Susac syndrome from multiple sclerosis. Mult Scler 2012; 18 (11) 1592-9.
  • 75 Wood ET. et al. Investigating axonal damage in multiple sclerosis by diffusion tensor spectroscopy. J Neurosci 2012; 32 (19) 6665-9.
  • 76 Grams AE. et al. MRI of the lumbar spine at 7 Tesla in healthy volunteers and a patient with congenital malformations. Skeletal Radiol 2012; 41 (05) 509-14.
  • 77 Vossen M. et al. A radiofrequency coil configuration for imaging the human vertebral column at 7 T. J Magn Reson 2011; 208 (02) 291-7.
  • 78 Uhlenbrock D, Forsting M. MRT und MRA des Kopfes. 2. Auflage. Stuttgart: Thieme; 2007
  • 79 Ugurbil K. The road to functional imaging and ultrahigh fields. Neuroimage 2012; 62 (02) 726-35.
  • 80 Yacoub E. et al. Imaging brain function in humans at 7 Tesla. Magn Reson Med 2001; 45 (04) 588-94.
  • 81 Windischberger C, Fischmeister FP, Schopf V, Sladky R, Moser E. [Functional magnetic resonance imaging with ultra-high fields]. Radiologe 2010; 50 (02) 144-51.
  • 82 Heidemann RM. et al. Isotropic submillimeter fMRI in the human brain at 7 T: combining reduced field-of-view imaging and partially parallel acquisitions. Magn Reson Med 2012; 68 (05) 1506-16.
  • 83 Harmer J. et al. Spatial location and strength of BOLD activation in high-spatial-resolution fMRI of the motor cortex: a comparison of spin echo and gradient echo fMRI at 7 T. NMR Biomed 2012; 25 (05) 717-25.
  • 84 Poser BA. et al. Three dimensional echo-planar imaging at 7 Tesla. Neuroimage 2010; 51 (01) 261-6.
  • 85 Kuehn E. et al. Judging roughness by sight-A 7-tesla fMRI study on responsivity of the primary somatosensory cortex during observed touch of self and others. Hum Brain Mapp. 2012 Mar 16, E-pub ahead of print.
  • 86 Poser BA, Norris DG. Investigating the benefits of multi-echo EPI for fMRI at 7 T. Neuroimage 2009; 45 (04) 1162-72.
  • 87 Grams AE. et al. Cerebral magnetic resonance spectroscopy at 7 Tesla: standard values and regional differences. Acad Radiol 2011; 18 (05) 584-7.
  • 88 Scheenen TW, Heerschap A, Klomp DW. Towards 1H-MRSI of the human brain at 7T with slice-selective adiabatic refocusing pulses. MAGMA 2008; 21 1-2 95-101.
  • 89 Gambarota G. et al. In vivo measurement of glycine with short echo-time 1H MRS in human brain at 7 T. MAGMA 2009; 22 (01) 1-4.
  • 90 Hattori N, Abe K, Sakoda S, Sawada T. Proton MR spectroscopic study at 3 Tesla on glutamate/glutamine in Alzheimer’s disease. Neuroreport 2002; 13 (01) 183-6.
  • 91 Qian Y, Zhao T, Zheng H, Weimer J, Boada FE. High-resolution sodium imaging of human brain at 7 T. Magn Reson Med 2012; 68 (01) 227-33.
  • 92 Hussain MS. et al. Sodium imaging intensity increases with time after human ischemic stroke. Ann Neurol 2009; 66 (01) 55-62.
  • 93 Wijnen JP. et al. Quantitative 31P magnetic resonance spectroscopy of the human breast at 7 T. Magn Reson Med 2012; 68 (02) 339-48.
  • 94 Chmelik M. et al. Fully adiabatic (31) P 2D-CSI with reduced chemical shift displacement error at 7 T – GOIA-1D-ISIS/2D-CSI. Magn Reson Med. 2012 Jun 19, E-pub ahead of print.