Tierarztl Prax Ausg K Kleintiere Heimtiere 2012; 40(03): 191-196
DOI: 10.1055/s-0038-1623638
Review Article
Schattauer GmbH

Chromosome analyses in dogs

Chromosomenuntersuchungen bei Hunden
N. Reimann-Berg
1   Small Animal Clinic and Research Cluster REBIRTH, Stiftung Tierärztliche Hochschule Hannover, Hannover, Germany
2   Center for Human Genetics Bremen, University of Bremen, Bremen, Germany
,
J. Bullerdiek
1   Small Animal Clinic and Research Cluster REBIRTH, Stiftung Tierärztliche Hochschule Hannover, Hannover, Germany
2   Center for Human Genetics Bremen, University of Bremen, Bremen, Germany
,
H. Murua Escobar
1   Small Animal Clinic and Research Cluster REBIRTH, Stiftung Tierärztliche Hochschule Hannover, Hannover, Germany
,
I. Nolte
1   Small Animal Clinic and Research Cluster REBIRTH, Stiftung Tierärztliche Hochschule Hannover, Hannover, Germany
› Author Affiliations
Further Information

Publication History

Eingegangen: 09 February 2011

Accepted after revision: 18 August 2011

Publication Date:
06 January 2018 (online)

Summary

Cytogenetics is the study of normal and abnormal chromosomes. Every species is characterized by a given number of chromosomes that can be recognized by their specific shape. The chromosomes are arranged according to standard classification schemes for the respective species. While pre-and postnatal chromosome analyses investigate the constitutional karyotype, tumor cytogenetics is focused on the detection of clonal acquired, tumor-associated chromosome aberrations. Cytogenetic investigations in dogs are of great value especially for breeders dealing with fertility problems within their pedigrees, for veterinarians and last but not least for the dog owners. Dogs and humans share a variety of genetic diseases, including cancer. Thus, the dog has become an increasingly important model for genetic diseases. However, cytogenetic analyses of canine cells are complicated by the complex karyotype of the dog. Only just 15 years ago, a standard classification scheme for the complete canine karyotype was established. For chromosome analyses of canine cells the same steps of chromosome preparation are used as in human cytogenetics.There are few reports about cytogenetic changes in non-neoplastic cells, involving predominantly the sex chromosomes. Cytogenetic analyses of different entities of canine tumors revealed that, comparable to human tumors, tumors of the dog are often characterized by clonal chromosome aberrations, which might be used as diagnostic and prognostic markers. The integration of modern techniques (molecular genetic approaches, adaptive computer programs) will facilitate and complete conventional cytogenetic studies. However, conventional cytogenetics is still non-replaceable.

Zusammenfassung

Die Zytogenetik ist ein Teilgebiet der Genetik, das sich mit den Chromosomen beschäftigt. Die Anzahl der Chromosomen in einem Zellkern ist für die jeweilige Spezies hochspezifisch. Die Anordnung der Chromosomen, der so genannte Karyotyp, wird durch international standardisierte Nomenklaturen vorgegeben. Die prä-und postnatale Zytogenetik untersucht den angeborenen, konstitutionellen Karyotyp, während sich die Tumorzytogenetik mit erworbenen, tumorassoziierten Chromosomenaberrationen befasst. Chromosomenuntersuchungen an Hunden besitzen sowohl für Züchter, die beispielsweise mit Fertilitätsproblemen in ihrer Zucht konfrontiert sind, aber insbesondere auch für Tierärzte und damit letztendlich für die Hundebesitzer große Bedeutung. Hinzu kommt, dass in den letzten Jahren das Interesse am Hund als Modelltier für den Menschen gerade im Bereich der genetischen Erkrankungen kontinuierlich zugenommen hat. Der Karyotyp des Hundes gehört jedoch zu den kompliziertesten Karyotypen bei Säugetieren überhaupt. Er besteht aus 76 akrozentrischen Autosomen, die sich in Größe, Gestalt und Bandenmuster sehr ähneln, und den metazentrischen Geschlechtschromosomen. Erst vor ca. 15 Jahren konnte eine standardisierte Bandennomenklatur für den kaninen Karyotyp erstellt werden. Für die Chromosomenanalyse von kaninen Zellen werden die gleichen traditionellen Schritte der Chromosomenpräparation durchgeführt, die man aus der humanen Zytogenetik kennt. Bisher gibt es nur vereinzelte Berichte über chromosomale Anomalien in nicht neoplastischen Zellen des Hundes. In diesen Veröffentlichungen werden überwiegend Veränderungen der Geschlechtschromosomen (X und Y) beschrieben. Zytogenetische Untersuchungen an kaninen Tumoren unterschiedlichster Entitäten haben gezeigt, dass diese, ähnlich wie Tumoren des Menschen, häufig so genannte klonale Chromosomenanomalien aufweisen, die als potenzielle Diagnose-und Prognosemarker verwendet werden könnten. Der Einsatz modernster Techniken (lernfähige Computerprogramme, Integration molekulargenetischer Methoden) wird zytogenetische Untersuchungen an kaninen Zellen vereinfachen und ergänzen, sie aber nicht ersetzen können.

 
  • References

  • 1 Bartnitzke S, Motzko H, Caselitz J, Kornberg M, Bullerdiek J, Schloot W. A recurrent marker chromosome involving chromosome 1 in two mammary tumors of the dog. Cytogenet Cell Genet 1992; 60 (02) 135-137.
  • 2 Bartnitzke S, Motzko H, Rosenhagen C, Bullerdiek J. Benign mixed tumor of canine mammary gland showing an r(X) and trisomy 5 as the only clonal abnormalities. Cancer Genet Cytogenet 1992; 62 (01) 29-31.
  • 3 Bowling AT, Breen M, Chowdhary BP, Hirota K, Lear T, Millon LV. et al. International system for cytogenetic nomenclature of the domestic horse. Report of the Third International Committee for the Standardization of the domestic horse karyotype, Davis, CA, USA, 1996. Chromosome Res 1997; 05 (07) 433-443.
  • 4 Breen M, Bullerdiek J, Langford CF. The DAPI banded karyotype of the domestic dog (Canis familiaris) generated using chromosome-specific paint probes. Chromosome Res 1999; 07 (05) 401-406.
  • 5 Breen M, Reimann N, Bosma AA, Ladon D, Zijlstra C, Bartnitzke S, et al. eds. Standardization of chromosomes nos. 22–38 of the dog (Canis familiaris) with the use of canine painting probes. 13th European Colloquium on Cytogenetics of Domestic Animals. 1998. Budapest, Hungary.:
  • 6 Cho KW, Youn HY, Watari T, Tsujimoto H, Hasegawa A, Satoh H. A proposed nomenclature of the domestic cat karyotype. Cytogenet Cell Genet 1997; 79 (1–2): 71-78.
  • 7 Cribiu EP, Di Berardino D, Di Meo GP, Eggen A, Gallagher DS, Gustavsson I. et al. International System for Chromosome Nomenclature of Domestic Bovids (ISCNDB 2000). Cytogenet Cell Genet 2001; 92 (3–4): 283-299.
  • 8 Graphodatsky AS, Beklemisheva VR, Dolf G. High-resolution GTG-banding patterns of dog and silver fox chromosomes: description and comparative analysis. Cytogenet Cell Genet 1995; 69 (3–4): 226-231.
  • 9 Griffin DK, Finch KA. The genetic and cytogenetic basis of male infertility. Hum Fertil (Camb) 2005; 08 (01) 19-26.
  • 10 Hahn KA, Richardson RC, Hahn EA, Chrisman CL. Diagnostic and prognostic importance of chromosomal aberrations identified in 61 dogs with lymphosarcoma. Vet Pathol 1994; 31 (05) 528-540.
  • 11 Hamta A, Adamovic T, Samuelson E, Helou K, Behboudi A, Levan G. Chromosome ideograms of the laboratory rat (Rattus norvegicus) based on high-resolution banding, and anchoring of the cytogenetic map to the DNA sequence by FISH in sample chromosomes. Cytogenet Genome Res 2006; 115 (02) 158-168.
  • 12 Horsting N, Wohlsein P, Reimann N, Bartnitzke S, Bullerdiek J, Nolte I. Cytogenetic analysis of three oropharyngeal malignant melanomas in dogs. Res Vet Sci 1999; 67 (02) 149-151.
  • 13 Idowu L. Observations on the chromosomes of a lymphosarcoma in a dog. Vet Rec 1976; 99 (06) 103.
  • 14 ISCN. An International System for Human Cytogenetic Nomenclature. Shaffer LG, Slovak ML, Campbell LJ. eds. Basel: Karger; 2009
  • 15 Lingjaerde OC, Baumbusch LO, Liestol K, Glad IK, Borresen-Dale AL. CGHExplorer: a program for analysis of array-CGH data. Bioinformatics 2005; 21 (06) 821-822.
  • 16 Manolache M, Ross WM, Schmid M. Banding analysis of the somatic chromosomes of the domestic dog (Canis familiaris). Can J Genet Cytol 1976; 18 (03) 513-518.
  • 17 Mayr B, Schleger W, Kalat M, Schweiger P, Reifinger M, Eisenmenger E. Cytogenetic studies in a canine mammary tumor. Cancer Genet Cytogenet 1990; 47 (01) 83-87.
  • 18 Mellink CNM, Bosma AA. The karyotype of the dog (Canis familiaris L.). In: Cytogenetics of Animals. Halnan CRE. ed. Wallingford, UK: CAB International; 1989: 151-158.
  • 19 Mitelman F, Johansson B, Mertens FE. Mitelman Database of chromosome aberrations and gene fusions in cancer. http://cgapncinihgov/Chromosomes/Mitelman 2010
  • 20 Nesbitt MN, Francke U. A system of nomenclature for band patterns of mouse chromosomes. Chromosoma 1973; 41 (02) 145-158.
  • 21 Nolte M, Werner M, Nolte I, Georgii A. Different cytogenetic findings in two clinically similar leukaemic dogs. J Comp Pathol 1993; 108 (04) 337-342.
  • 22 Ogilvie CM. Prenatal diagnosis for chromosome abnormalities: past, present and future. Pathol Biol (Paris) 2003; 51 (03) 156-160.
  • 23 Painter TS. Chromosome Numbers in Mammals. Science 1925; 61 (1581): 423-424.
  • 24 Rath V. Über die Konstanz der Chromosomenzahl bei Tieren. Biol Zbl 1894; (14) 449.
  • 25 Reimann-Berg N, Murua HEscobar, Nolte I, Bullerdiek J. Testicular tumor in an XXY dog. Cancer Genet Cytogenet 2008; 183 (02) 114-116.
  • 26 Reimann-Berg N, Willenbrock S, Murua HEscobar, Eberle N, Gerhauser I, Mischke R. et al. Two new cases of polysomy 13 in canine prostate cancer. Cytogenet Genome Res 2011; 132 (1–2): 16-21.
  • 27 Reimann N, Bartnitzke S, Bullerdiek J, Mischke R, Nolte I. Trisomy 1 in a canine acute leukemia indicating the pathogenetic importance of polysomy 1 in leukemias of the dog. Cancer Genet Cytogenet 1998; 101 (01) 49-52.
  • 28 Reimann N, Bartnitzke S, Bullerdiek J, Schmitz U, Rogalla P, Nolte I. et al. An extended nomenclature of the canine karyotype. Cytogenet Cell Genet 1996; 73 (1–2): 140-144.
  • 29 Reimann N, Bartnitzke S, Nolte I, Bullerdiek J. Working with canine chromosomes: current recommendations for karyotype description. J Hered 1999; 90 (01) 31-34.
  • 30 Reimann N, Nolte I, Bartnitzke S, Bullerdiek J. Re: Sit, DNA, sit: cancer genetics going to the dogs. J Natl Cancer Inst 1999; 91 (19) 1688-1689.
  • 31 Reimann N, Nolte I, Bonk U, Bartnitzke S, Bullerdiek J. Cytogenetic investigation of canine lipomas. Cancer Genet Cytogenet 1999; 111 (02) 172-174.
  • 32 Reimann N, Nolte I, Bonk U, Werner M, Bullerdiek J, Bartnitzke S. Trisomy 18 in a canine thyroid adenoma. Cancer Genet Cytogenet 1996; 90 (02) 154-156.
  • 33 Schelling C, Pienkowska A, Arnold S, Hauser B, Switonski M. A male to female sex-reversed dog with a reciprocal translocation. J Reprod Fertil Suppl 2001; 57: 435-438.
  • 34 Selden JR, Moorhead PS, Oehlert ML, Patterson DF. The Giemsa banding pattern of the canine karyotype. Cytogenet Cell Genet 1975; 15 (06) 380-387.
  • 35 Stone DM, Jacky PB, Prieur DJ. The giemsa banding pattern of canine chromosomes, using a cell synchronization technique. Genome 1991; 34 (03) 407-412.
  • 36 Switonski M, Reimann N, Bosma AA, Long S, Bartnitzke S, Pienkowska A. et al. Report on the progress of standardization of the G-banded canine (Canis familiaris) karyotype. Committee for the Standardized Karyotype of the Dog (Canis familiaris). Chromosome Res 1996; 04 (04) 306-309.
  • 37 Switonski M, Szczerbal I, Grewling J, Antosik P, Nizanski W, Yang F. Two cases of infertile bitches with 78,XX/77,X mosaic karyotype: a need for cytogenetic evaluation of dogs with reproductive disorders. J Hered 2003; 94 (01) 65-68.
  • 38 Switonski M, Szczerbal I, Skorczyk A, Yang F, Antosik P. Robertsonian translocation (8;14) in an infertile bitch (Canis familiaris). J Appl Genet 2003; 44 (04) 525-527.
  • 39 Thomas R, Duke SE, Karlsson EK, Evans A, Ellis P, Lindblad-Toh K. et al. A genome assembly-integrated dog 1 Mb BAC microarray: a cytogenetic resource for canine cancer studies and comparative genomic analysis. Cytogenet Genome Res 2008; 122 (02) 110-121.
  • 40 Thomas R, Rebbeck C, Leroi AM, Burt A, Breen M. Extensive conservation of genomic imbalances in canine transmissible venereal tumors (CTVT) detected by microarray-based CGH analysis. Chromosome Res 2009; 17 (07) 927-934.
  • 41 Thomas R, Wang HJ, Tsai PC, Langford CF, Fosmire SP, Jubala CM. et al. Influence of genetic background on tumor karyotypes: evidence for breedassociated cytogenetic aberrations in canine appendicular osteosarcoma. Chromosome Res 2009; 17 (03) 365-377.
  • 42 Winkler S, Murua HEscobar, Reimann-Berg N, Bullerdiek J, Nolte I. Cytogenetic investigations in four canine lymphomas. Anticancer Res 2005; 25 (6B): 3995-3998.
  • 43 Winkler S, Reimann-Berg N, Murua HEscobar, Loeschke S, Eberle N, Hoinghaus R. et al. Polysomy 13 in a canine prostate carcinoma underlining its significance in the development of prostate cancer. Cancer Genet Cytogenet 2006; 169 (02) 154-158.
  • 44 Zhang L, Zhang XH, Wang JL, Ren MH, Pei QY, Wei J. Cytogenetic analysis of 355 cases of fetal loss in different trimesters. Prenat Diagn 2011; 31 (02) 152-158.