Osteologie 2015; 24(02): 81-84
DOI: 10.1055/s-0037-1622052
Querschnittlähmung und Osteoporose
Schattauer GmbH

Therapieansätze bei querschnittassoziierter Osteoporose

Therapeutic approaches for spinal cord injury related osteoporosis
A. Frotzler
1   Clinical Trial Unit, Schweizer Paraplegiker-Zentrum Nottwil, Schweiz
,
Y.-B. Kalke
2   RKU – Universitätsund Rehabilitationsklinken Ulm, Querschnittgelähmtenzentrum, Orthopädische Universitätsklinik, Ulm, Deutschland
,
J. Moosburger
3   Rehaklinik Olgabad, Bad Wildbad, Deutschland
› Author Affiliations
Further Information

Publication History

eingereicht: 23 February 2015

angenommen: 01 March 2015

Publication Date:
02 January 2018 (online)

Zusammenfassung

Menschen mit chronischer, motorisch kompletter Querschnittlähmung weisen einen ausgeprägten subläsionalen Abbau der Knochenmineraldichte auf. Die klinische Bedeutung dieses Knochenabbaus liegt in einem erhöhten Risiko für Frakturen der unteren Extremitäten. Daher ist es von klinischer Relevanz, die Knochenfragilität bei Querschnittgelähmten zu reduzieren. Richtlinien für die Therapie einer querschnittassoziierten Osteoporose sind bislang ausstehend. Daher ist es das Ziel der Arbeitsgruppe Osteoporose der Deutschsprachigen Medizinischen Gesellschaft für Paraplegie (DMGP), in diesem Artikel entsprechende Empfehlungen zu formulieren. Basierend auf wissenschaftlichen Studien kann der Einsatz eines Elektrostimulationinduzierten Fahrradtrainings zur Therapie einer Osteoporose in den unteren Extremitäten von Personen mit chronischer Querschnittlähmung erwogen werden. Die Gabe von Bisphosphonat in Kombination mit Kalzium scheint zudem das Potenzial zu haben, die Knochenresorption bei Männern mit chronischer Querschnittlähmung zu reduzieren. Es muss beachtet werden, dass diese Empfehlungen auf einer beschränkten Studienlage basieren. Weiterführende Studien sind demzufolge notwendig, um insbesondere die Empfehlung für eine Anwendung von Bisphosphonat zur Therapie einer querschnittassoziierten Osteoporose zu erhärten.

Summary

Individuals with chronic motor and sensory complete spinal cord injury (SCI) suffer from a distinct sublesional bone loss. The clinical relevance of this sublesional bone loss consists of an increased risk for lower extremity fractures. Therefore, the reduction of bone fragility in individuals with SCI is of clinical importance. So far, recommendations for the therapy of osteoporosis in individuals with SCI are missing. It is therefore the aim of the osteoporosis working group of the German speaking medical society for paraplegia (DMGP) to formulate recommendations in this regard. Based on the literature, the use of electrostimulation-induced cycling training (at least three times a week) can be considered an effective therapy for SCI related osteoporosis. The administration of bisphosphonates in combination with calcium and vitamin D seems to have the potential to reduce bone resorption. However, these recommendations are based on limited knowledge, i. e. observation periods of up to two years and small numbers of participants (up to 26 in the interventional group). Therefore, further studies are needed, particularly to confirm the effectiveness of bisphosphonates for the treatment of SCI related osteoporosis.

 
  • Literatur

  • 1 Szollar SM, Martin EM, Sartoris DJ. et al. Bone mineral density and indexes of bone metabolism in spinal cord injury. Am J Phys Med Rehabil 1998; 77 (01) 28-35.
  • 2 Vestergaard P, Krogh K, Rejnmark L, Mosekilde L. Fracture rates and risk factors for fractures in patients with spinal cord injury. Spinal cord 1998; 36 (11) 790-796.
  • 3 Giangregorio L, McCartney N. Bone loss and muscle atrophy in spinal cord injury: epidemiology, fracture prediction, and rehabilitation strategies. The journal of spinal cord medicine 2006; 29 (05) 489-500.
  • 4 Zehnder Y, Luthi M, Michel D. et al. Long-term changes in bone metabolism, bone mineral density, quantitative ultrasound parameters, and fracture incidence after spinal cord injury: a cross-sectional observational study in 100 paraplegic men. Osteoporosis international 2004; 15 (03) 180-189.
  • 5 Fattal C, Mariano-Goulart D, Thomas E. et al. Osteoporosis in persons with spinal cord injury: the need for a targeted therapeutic education. Archives of physical medicine and rehabilitation 2011; 92 (01) 59-67 [Epub 2010/12/29].
  • 6 Morse LR, Battaglino RA, Stolzmann KL. et al. Osteoporotic fractures and hospitalization risk in chronic spinal cord injury. Osteoporosis International 2009; 20 (03) 385-392 [Epub 2008/06/27].
  • 7 Hammond ER, Metcalf HM, McDonald JW, Sadowsky CL. Bone mass in individuals with chronic spinal cord injury: associations with activity-based therapy, neurologic and functional status, a retrospective study. Archives of physical medicine and rehabilitation 2014; 95 (12) 2342-2349 [Epub 2014/08/02].
  • 8 Wilmet E, Ismail AA, Heilporn A. et al. Longitudinal study of the bone mineral content and of soft tissue composition after spinal cord section. Paraplegia 1995; 33 (11) 674-677.
  • 9 Garland DE, Stewart CA, Adkins RH. et al. Osteoporosis after spinal cord injury. J Orthop Res 1992; 10 (03) 371-378.
  • 10 Biering-Sorensen F, Bohr HH, Schaadt OP. Longitudinal study of bone mineral content in the lumbar spine, the forearm and the lower extremities after spinal cord injury. Eur J Clin Invest 1990; 20 (03) 330-335.
  • 11 Frotzler A, Berger M, Knecht H, Eser P. Bone steady-state is established at reduced bone strength after spinal cord injury: A longitudinal study using peripheral quantitative computed tomography (pQCT). Bone 2008; 43 (03) 549-555.
  • 12 Eser P, Frotzler A, Zehnder Y. et al. Relationship between the duration of paralysis and bone structure: a pQCT study of spinal cord injured individuals. Bone 2004; 34 (05) 869-880.
  • 13 Coupaud S, McLean AN, Allan DB. Role of peripheral quantitative computed tomography in identifying disuse osteoporosis in paraplegia. Skeletal Radiology 2009; 38 (10) 989-995 [Epub 2009/03/12].
  • 14 Slade JM, Bickel CS, Modlesky CM. et al. Trabecular bone is more deteriorated in spinal cord injured versus estrogen-free postmenopausal women. Osteoporosis international 2005; 16 (03) 263-272.
  • 15 Frost HM. Muscle, bone, and the Utah paradigm: a 1999 overview. Med Sci Sports Exerc 2000; 32 (05) 911-917.
  • 16 Biering-Sorensen F, Nielsen JB, Klinge K. Spasticity-assessment: a review. Spinal cord 2006; 44 (12) 708-722.
  • 17 Eng JJ, Teasell R, Miller WC. et al. Spinal Cord Injury Rehabilitation Evidence: Methods of the SCIRE Systematic Review. Topics in spinal cord injury rehabilitation 2007; 13 (01) 1-10 [Epub 2007/07/01].
  • 18 Ogilvie C, Bowker P, Rowley DI. The physiological benefits of paraplegic orthotically aided walking. Paraplegia 1993; 31 (02) 111-115 [Epub 1993/02/01].
  • 19 Goemaere S, Van Laere M, De Neve P, Kaufman JM. Bone mineral status in paraplegic patients who do or do not perform standing. Osteoporosis international 1994; 04 (03) 138-143.
  • 20 Ashe MC, Craven C, Eng JJ. et al. Prevention and treatment of bone loss after spinal cord injury: a systematic review. Topics in spinal cord injury rehabilitation 2007; 13 (01) 123-145.
  • 21 Coupaud S, Jack LP, Hunt KJ, Allan DB. Muscle and bone adaptations after treadmill training in incomplete Spinal Cord Injury: a case study using peripheral Quantitative Computed Tomography. J Musculoskelet Neuronal Interact 2009; 09 (04) 288-297 [Epub 2009/12/02].
  • 22 Belanger M, Stein RB, Wheeler GD. et al. Electrical stimulation: can it increase muscle strength and reverse osteopenia in spinal cord injured individuals?. Archives of physical medicine and rehabilitation 2000; 81 (08) 1090-1098.
  • 23 Leeds EM, Klose KJ, Ganz W. et al. Bone mineral density after bicycle ergometry training. Archives of physical medicine and rehabilitation 1990; 71 (03) 207-209.
  • 24 BeDell KK, Scremin AM, Perell KL, Kunkel CF. Effects of functional electrical stimulation-induced lower extremity cycling on bone density of spinal cord-injured patients. Am J Phys Med Rehabil 1996; 75 (01) 29-34.
  • 25 Bloomfield SA, Mysiw WJ, Jackson RD. Bone mass and endocrine adaptations to training in spinal cord injured individuals. Bone 1996; 19 (01) 61-68.
  • 26 Mohr T, Podenphant J, Biering-Sorensen F. et al. Increased bone mineral density after prolonged electrically induced cycle training of paralyzed limbs in spinal cord injured man. Calcif Tissue Int 1997; 61 (01) 22-25.
  • 27 Frotzler A, Coupaud S, Perret C. et al. High-volume FES-cycling partially reverses bone loss in people with chronic spinal cord injury. Bone 2008; 43 (01) 169-176.
  • 28 Griffin L, Decker MJ, Hwang JY. et al. Functional electrical stimulation cycling improves body composition, metabolic and neural factors in persons with spinal cord injury. Journal of Electromyography and Kinesiology 2009; 19 (04) 614-622 [Epub 2008/04/29].
  • 29 Chen SC, Lai CH, Chan WP. et al. Increases in bone mineral density after functional electrical stimulation cycling exercises in spinal cord injured patients. Disabil Rehabil 2005; 27 (22) 1337-1341.
  • 30 Mohr T, Podenphant J, Biering-Sorensen F. et al. Increased bone mineral density after prolonged electrically induced cycle training of paralyzed limbs in spinal cord injured man. Calcif Tissue Int 1997; 61 (01) 22-25 [Epub 1997/07/01].
  • 31 Chang KV, Hung CY, Chen WS. et al. Effectiveness of bisphosphonate analogues and functional electrical stimulation on attenuating post-injury osteoporosis in spinal cord injury patientsa systematic review and meta-analysis. PloS one 2013; 08 (11) e81124 [Epub 2013/11/28].
  • 32 Frotzler A, Coupaud S, Perret C. et al. effect of detraining on bone and muscle tissue in subjects with chronic spinal cord injury after a period of electrically-stimulated cycling: a small cohort study. J Rehabil Med. 2009 41. (04) 282-285 [Epub 2009/02/28].
  • 33 Mohr T, Andersen JL, Biering-Sorensen F. et al. Long-term adaptation to electrically induced cycle training in severe spinal cord injured individuals. Spinal cord 1997; 35 (01) 1-16.
  • 34 Nance PW, Schryvers O, Leslie W. et al. Intravenous pamidronate attenuates bone density loss after acute spinal cord injury. Archives of physical medicine and rehabilitation 1999; 80 (03) 243-251.
  • 35 Bubbear JS, Gall A, Middleton FR. et al. Early treatment with zoledronic acid prevents bone loss at the hip following acute spinal cord injury. Osteoporosis international. 2011 22. 01 271-279 [Epub 2010/04/02].
  • 36 Gilchrist NL, Frampton CM, Acland RH. et al. Alendronate prevents bone loss in patients with acute spinal cord injury: a randomized, doubleblind, placebo-controlled study. The Journal of clinical endocrinology and metabolism 2007; 92 (04) 1385-1390.
  • 37 Zehnder Y, Risi S, Michel D. et al. Prevention of bone loss in paraplegics over 2 years with alendronate. J Bone Miner Res 2004; 19 (07) 1067-1074.
  • 38 Moran CMde Brito, Battistella LR, Saito ET, Sakamoto H. Effect of alendronate on bone mineral density in spinal cord injury patients: a pilot study. Spinal cord 2005; 43 (06) 341-348.