Osteologie 2014; 23(03): 202-206
DOI: 10.1055/s-0037-1622013
Original and review articles
Schattauer GmbH

Adaptation of trabecular bone to very high mechanical loads

Anpassung des trabekulären Knochens an sehr hohe mechanische Belastungen
L. Claes
1   Institute of Orthopaedic Research and Biomechanics, Centre of Musculoskeletal Research, Ulm University, Ulm, Germany
,
M. Reusch
1   Institute of Orthopaedic Research and Biomechanics, Centre of Musculoskeletal Research, Ulm University, Ulm, Germany
,
T. Wehner
1   Institute of Orthopaedic Research and Biomechanics, Centre of Musculoskeletal Research, Ulm University, Ulm, Germany
,
L. Dürselen
1   Institute of Orthopaedic Research and Biomechanics, Centre of Musculoskeletal Research, Ulm University, Ulm, Germany
,
A. Ignatius
1   Institute of Orthopaedic Research and Biomechanics, Centre of Musculoskeletal Research, Ulm University, Ulm, Germany
› Institutsangaben
This study was supported by the German Research Foundation (DFG CL77/16–1). We thank Mrs. Patrizia Horny for the preparation of the illustrations and Mrs. Angelika Reindl for the preparation of the manuscript.
Weitere Informationen

Publikationsverlauf

received: 13. Januar 2014

accepted after revision: 20. Mai 2014

Publikationsdatum:
02. Januar 2018 (online)

Summary

It is well known that bone adapts to increased mechanical loading by the apposition of newly formed bone. The correlation between load-induced bone stress and strain with bone formation has often been investigated in cortical bone, however, little is known about this relationship in trabecular bone. In particular, nothing is known about trabecular bone adaptation in response to very high mechanical loading close to its fatigue load. Here, we investigated trabecular bone formation in a sheep osteotomy model of the femoral condyle in a region of interest close to the osteotomy, where local stresses in the range of the fatigue strength of trabecular bone occurred. After eight weeks, the trabecular bone volume and the mineral apposition rate increased two-fold and threefold, respectively, at this highly loaded location, compared to the corresponding region of interest in intact femoral condyles under physiological loading. This study demonstrated, for the first time, the remarkable capability of trabecular bone to adapt to stress and strain close to its failure load.

Zusammenfassung

Es ist seit Langem bekannt, dass sich Knochen an erhöhte mechanische Belastung durch Knochenapposition anpassen kann. Die Korrelation zwischen erhöhten Spannungen und Dehnungen im Knochen und der Knochenformation wurde häufig in kortikalen Knochen, aber sehr selten in trabekulären Knochen untersucht. Speziell für sehr hohe mechanische Belastungen nahe der Bruchbelastung des Knochens gibt es keine Studien. In dieser Studie untersuchten wir die Knochenneubildung im spongiösen Knochen in der Nachbarschaft zu einer partiellen Osteotomie im Schafskondylus, wo es lokal zu sehr großen Spannungen kam, die nahe der Bruchspannung des Knochens lagen. Nach acht Wochen war das Knochenvolumen an dieser hochbelasteten Stelle um das ca. Zweifache und die Knochenneubildungsrate um das ca. Dreifache im Vergleich zum normalen spongiösen Knochen der nicht operierten, physiologisch belasteten kontralateralen Kondyle erhöht. Diese Studie zeigt zum ersten Mal die erstaunlich hohe Anpassungsfähigkeit des spongiösen Knochens unter extrem hohen Spannungen und Dehnungen nahe der Bruchbeanspruchung des Knochens.

 
  • References

  • 1 Wolff J. The Law of Bone Remodelling (Das Gesetz der Transformation der Knochen). Berlin: Springer; 1892
  • 2 Frost HM. Bone`s mechanostat: a 2003 update. The anatomical record Part A, Discoveries in molecular, cellular, and evolutionary biology 2003; 275 (02) 1081-1101.
  • 3 Li XJ, Jee WS, Chow SY, Woodbury DM. Adaptation of cancellous bone to aging and immobilization in the rat: a single photon absorptiometry and histomorphometry study. The Anatomical record 1990; 227 (01) 12-24.
  • 4 Chambers TJ, Evans M, Gardner TN. et al. Induction of bone formation in rat tail vertebrae by mechanical loading. Bone and mineral 1993; 20 (02) 167-178.
  • 5 Biewener AA, Fazzalari NL, Konieczynski DD, Baudinette RV. Adaptive changes in trabecular architecture in relation to functional strain patterns and disuse. Bone 1996; 19 (01) 1-8.
  • 6 Rubin CT, Lanyon LE. Regulation of bone formation by applied dynamic loads. The Journal of bone and joint surgery American volume 1984; 66 (03) 397-402.
  • 7 Webster D, Wasserman E, Ehrbar M. et al. Mechanical loading of mouse caudal vertebrae increases trabecular and cortical bone mass-dependence on dose and genotype. Biomechanics and modeling in mechanobiology 2010; 09 (06) 737-747.
  • 8 De Souza RL, Matsuura M, Eckstein F. et al. Noninvasive axial loading of mouse tibiae increases cortical bone formation and modifies trabecular organization: a new model to study cortical and cancellous compartments in a single loaded element. Bone 2005; 37 (06) 810-818.
  • 9 Lanyon LE, Goodship AE, Pye CJ, MacFie JH. Mechanically adaptive bone remodelling. Journal of biomechanics 1982; 15 (03) 141-154.
  • 10 Fritton JC, Myers ER, Wright TM, van der Meulen MC. Loading induces site-specific increases in mineral content assessed by microcomputed tomography of the mouse tibia. Bone 2005; 36 (06) 1030-1038.
  • 11 Schulte FA, Ruffoni D, Lambers FM. et al. Local mechanical stimuli regulate bone formation and resorption in mice at the tissue level. PloS one 2013; 08 (04) e62172.
  • 12 Webster D, Wirth A, van Lenthe GH, Muller R. Experimental and finite element analysis of the mouse caudal vertebrae loading model: prediction of cortical and trabecular bone adaptation. Biomechanics and modeling in mechanobiology 2012; 11 (1–2): 221-230.
  • 13 Guo XE, Eichler MJ, Takai E, Kim CH. Quantification of a rat tail vertebra model for trabecular bone adaptation studies. Journal of biomechanics 2002; 35 (03) 363-368.
  • 14 Claes L, Reusch M, Göckelmann M. et al. Metaphyseal fracture healing follows similar biomechanical rules as diaphyseal healing. Journal of orthopaedic research 2011; 29 (03) 425-432.
  • 15 Claes L, Veeser A, Göckelmann M. et al. A novel model to study metaphyseal bone healing under defined biomechanical conditions. Archives of orthopaedic and trauma surgery 2009; 129 (07) 923-928.
  • 16 Weibel ER. Principles and methods for the morphometric study of the lung and other organs. Laboratory investigation; a journal of technical methods and pathology 1963; 12: 131-155.
  • 17 Claes L, Rüter A, Mayr E. Low-intensity ultrasound enhances maturation of callus after segmental transport. Clinical orthopaedics and related research 2005; 430: 189-194.
  • 18 Parfitt AM, Drezner MK, Glorieux FH. et al. Bone histomorphometry: standardization of nomenclature, symbols, and units. Report of the ASBMR Histomorphometry Nomenclature Committee. Journal of bone and mineral research 1987; 02 (06) 595-610.
  • 19 Kim CH, Takai E, Zhou H. et al. Trabecular bone response to mechanical and parathyroid hormone stimulation: the role of mechanical microenvironment. Journal of bone and mineral research 2003; 18 (12) 2116-2125.
  • 20 Sugiyama T, Meakin LB, Browne WJ. et al. Bones’ adaptive response to mechanical loading is essentially linear between the low strains associated with disuse and the high strains associated with the lamellar/woven bone transition. Journal of bone and mineral research 2012; 27 (08) 1784-1793 PubMed PMID: 22431329.
  • 21 Morgan EF, Keaveny TM. Dependence of yield strain of human trabecular bone on anatomic site. Journal of biomechanics 2001; 34 (05) 569-577.
  • 22 Bayraktar HH, Keaveny TM. Mechanisms of uniformity of yield strains for trabecular bone. Journal of biomechanics 2004; 37 (11) 1671-1678.