Thromb Haemost 2001; 86(01): 144-148
DOI: 10.1055/s-0037-1616211
Research Article
Schattauer GmbH

Getting at the Variable Expressivity of Von Willebrand Disease

Gallia Levy
4   Departments of Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI, USA
,
David Ginsburg
1   Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA
2   Departments of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
3   Departments of Human Genetics, University of Michigan, Ann Arbor, MI, USA
4   Departments of Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI, USA
› Author Affiliations
Further Information

Publication History

Publication Date:
12 December 2017 (online)

Summary

Von Willebrand disease (VWD) is a heterogeneous bleeding disorder caused by abnormalities of von Willebrand factor (VWF). VWF levels vary widely in the general population, and this variation is likely to be a major factor accounting for the incomplete penetrance and variable expressivity of VWD. In addition, variation in VWF level may play an important role in determining the risk of venous thrombosis. A large component of the variation in VWF level in the general population has been shown to be attributable to genetic factors. This review will focus on the current understanding of the genetic causes for variation in VWF level, and will highlight future directions for getting at the variable expressivity of von Willebrand disease.

 
  • References

  • 1 Kraaijenhagen RA, Anker PSI, Koopman MMW, Reitsma PH, Prins MH, van d, Ende A, Buller HR. High plasma concentration of factor VIII is a major risk factor for venous thromboembolism. Thromb Haemost 2000; 83: 5-9.
  • 2 Rosendaal FR. High levels of factor VIII and venous thrombosis. Thromb Haemost 2000; 83: 1-2.
  • 3 Risch N, Merikangas K. The future of genetic studies of complex human diseases. Science 1996; 273: 1516-7.
  • 4 Nichols WC, Ginsburg D. von Willebrand disease. Medicine 1997; 76: 1-20.
  • 5 Zhang ZP, Falk G, Blombäck M, Egberg N, Anvret M. A single cytosine deletion in exon 18 of the von Willebrand factor gene is the most common mutation in Swedish vWD type III patients. Hum Mol Genet 1992; 1: 767-8.
  • 6 Schneppenheim R, Krey S, Bergmann F, Bock D, Budde U, Lange M, Linde R, Mittler U, Meili E, Mertes G. et al. Genetic heterogenity of severe von Willebrand disease type III in the German population. Hum Genet 1994; 94: 640-52.
  • 7 Mohlke KL, Nichols WC, Rehemtulla A, Kaufman RJ, Fagerström HM, Ritvanen KLA, Kekomäki R, Ginsburg D. A common frameshift mutation in von Willebrand factor does not alter mRNA stability but interferes with normal propeptide processing. Br J Haematol 1996; 95: 184-91.
  • 8 Rodeghiero F, Castaman G, Dini E. Epidemiological investigation of the prevalence of von Willebrand’s disease. Blood 1987; 69: 454-9.
  • 9 Eikenboom JCJ, Castaman G, Vos HL, Bertina RM, Rodeghiero F. Characterization of the genetic defects in recessive type 1 and type 3 von Willebrand disease patients of Italian origin. Thromb Haemost 1998; 79: 709-17.
  • 10 Nichols WC, Lyons SE, Harrison JS, Cody RL, Ginsburg D. Severe von Willebrand disease due to a defect at the level of von Willebrand factor mRNA expression: detection by exonic PCR-restriction fragment length polymorphism analysis. Proc Natl Acad Sci USA 1991; 88: 3857-61.
  • 11 Miller CH, Graham JB, Goldin LR, Elston RC. Genetics of classic von Willebrand‘s disease. I. phenotypic variation within families. Blood 1979; 54: 117-45.
  • 12 Zhang ZP, Lindstedt M, Blombäck M, Anvret M. Effects of the mutant von Willebrand factor gene in von Willebrand disease. Hum Genet 1995; 96: 388-94.
  • 13 Eikenboom JCJ, Matsushita T, Reitsma PH, Tuley EA, Castaman G, Briët E, Sadler JE. Dominant type 1 von Willebrand disease caused by mutated cysteine residues in the D3 domain of von Willebrand factor. Blood 1996; 88: 2433-41.
  • 14 Eikenboom JCJ, Reitsma PH, Peerlinck KMJ, Briët E. Recessive inheritance of von Willebrand‘s disease type I. Lancet 1993; 341: 982-6.
  • 15 von Willebrand EA. Hereditär Pseudohemofili. Finska Läkarsällskapetes Handl 1926; 67: 7-112.
  • 16 Triplett DA. Laboratory diagnosis of von Willebrand‘s disease. Mayo Clin Proc 1991; 66: 832-40.
  • 17 Rickles FR, Hoyer LW, Rick ME, Ahr DJ. The effects of epinephrine infusion in patients with von Willebrand‘s disease. J Clin Invest 1976; 57: 1618-25.
  • 18 Takeuchi M, Nagura H, Kaneda T. DDAVP and epinephrine-induced changes in the localization of von Willebrand factor antigen in endothelial cells of human oral mucosa. Blood 1988; 72: 850-4.
  • 19 Orstavik KH, Magnus P, Reisner H, Berg K, Graham JB, Nance W. Factor VIII and factor IX in a twin population. Evidence for a major effect of ABO locus on factor VIII level. Am J Hum Genet 1985; 37: 89-101.
  • 20 Lowe JB, Marth JD. Structures common to different types of glycans. In: Essentials of Glycobiology. Varki A, Cummings R, Esko J, Freeze H, Hart G, Marth J. eds. Cold Spring Harbor: Cold Spring Harbor Laboratory Press; 1999: 211-52.
  • 21 Sodetz JM, Paulson JC, McKee PA. Carbohydrate composition and identification of blood group A, B, and H oligosaccharide structures on human Factor VIII/von Willebrand factor. J Biol Chem 1979; 254: 10754-60.
  • 22 Gill JC, Endres-Brooks J, Bauer PJ, Marks WJ, Montgomery RR. The effect of ABO blood group on the diagnosis of von Willebrand Disease. Blood 1987; 69: 1691-5.
  • 23 Mohlke KL, Purkayastha AA, Westrick RJ, Smith PL, Petryniak B, Lowe JB, Ginsburg D. Mvwf, a dominant modifier of murine von Willebrand factor, results from altered lineage-specific expression of a glycosyltransferase. Cell 1999; 96: 111-20.
  • 24 Vlot AJ, Mauser-Bunschoten EP, Zarkova AG, Haan E, Kruitwagen CLJJ, Sixma JJ, van den Berg HM. The half-life of infused factor VIII is shorter in hemophiliac patients with blood group O than in those with blood group A. Thromb Haemost 2000; 83: 65-9.
  • 25 Orstavik KH, Kornstad L, Reisner H, Berg K. Possible effect of secretor locus on plasma concentration of Factor VIII and von Willebrand factor. Blood 1989; 73: 990-3.
  • 26 Di Paola J, Federici AB, Mannucci PM, Canciani MT, Kritzik M, Kunicki TJ, Nugent D. Low platelet α2β1 levels in type 1 von Willebrand disease correlate with impaired platelet function in a high shear stress system. Blood 1999; 93: 3578-82.
  • 27 Rosendaal FR. Risk factors for venous thrombosis: prevalence, risk, and interaction. Semin Hematol 1997; 34: 171-87.
  • 28 Nichols WC, Amano K, Cacheris PM, Figueiredo MS, Michaelides K, Schwaab R, Hoyer L, Kaufman RJ, Ginsburg D. Moderation of hemophilia A phenotype by the factor V R506Q mutation. Blood 1996; 88: 1183-7.
  • 29 Arbini AA, Mannucci PM, Bauer KA. Low prevalence of the factor V Leiden mutation among “severe” hemophilics with a “milder” bleeding diathesis. Thromb Haemost 1995; 74: 1255-8.
  • 30 Dietrich WF, Lander ES, Smith JS, Moser AR, Gould KA, Luongo C, Borenstein N, Dove W. Genetic identification of Mom-1, a major modifier locus affecting Min-induced intestinal neoplasia in the mouse. Cell 1993; 75: 631-9.
  • 31 Leder A, Wiener E, Lee MJ, Wickramasinghe SN, Leder P. A normal beta-globin allele as a modifier gene ameliorating the severity of alpha-thalassemia in mice. Proc Natl Acad Sci USA 1999; 96: 6291-5.
  • 32 Vidal SM, Malo D, Vogan K, Skamene E, Gros P. Natural resistance to infection with intracellular parasites: isolation of a candidate for Bcg. Cell 1993; 73: 469-85.
  • 33 Bellamy R, Ruwende C, Corrah T, McAdam KPWJ, Whittle HC, Hill AVS. Variations in the NRAMP1 gene and susceptibility to tuberculosis in West Africans. N Engl J Med 1998; 338: 640-4.
  • 34 Ginsburg D, Bowie EJW. Molecular genetics of von Willebrand disease. Blood 1992; 79: 2507-19.
  • 35 Denis C, Methia N, Frenette PS, Rayburn H, Ullman-Culleré M, Hynes RO, Wagner DD. A mouse model of severe von Willebrand disease: defects in hemostasis and thrombosis. Proc Natl Acad Sci USA 1998; 95: 9524-9.
  • 36 Mohlke KL, Nichols WC, Westrick RJ, Novak EK, Cooney KA, Swank RT, Ginsburg D. A novel modifier gene for plasma von Willebrand factor level maps to distal mouse chromosome 11. Proc Natl Acad Sci USA 1996; 93: 15352-7.
  • 37 Sweeney JD, Novak EK, Reddington M, Takeuchi KH, Swank RT. The RIIIS/J inbred mouse strain as a model for von Willebrand disease. Blood 1990; 76: 2258-65.
  • 38 Nichols WC, Cooney KA, Mohlke KL, Ballew JD, Yang A, Bruck ME, Reddington M, Novak EK, Swank RT, Ginsburg D. von Willebrand disease in the RIIIS/J mouse is caused by a defect outside of the von Willebrand factor gene. Blood 1994; 83: 3225-31.
  • 39 Smith PL, Lowe JB. Molecular cloning of a murine N-acetylgalactosamine transferase cDNA that determines expression of the T lymphocyte-specific CT oligosaccharide differentiation antigen. J Biol Chem 1994; 269: 15162-71.
  • 40 Dohi T, Yuyama Y, Natori Y, Smith PL, Lowe JB, Oshima M. Detection of N-acetylgalactosaminyltransferase mRNA which determines expression of Sda blood group carbohydrate structure in human gastrointestinal mucosa and cancer. Int J Cancer 1996; 67: 626-31.