Synthesis 2018; 50(23): 4683-4689
DOI: 10.1055/s-0037-1609914
paper
© Georg Thieme Verlag Stuttgart · New York

Synthesis of the 5-Fluoro-4-hydroxypentyl Side Chain Metabolites of Synthetic Cannabinoids 5F-APINACA and CUMYL-5F-PINACA

Ryan J. McKinnie
Department of Chemistry, University of New Orleans, New Orleans, LA 70148, USA   Email: mtrudell@uno.edu
,
Tasneam Darweesh
Department of Chemistry, University of New Orleans, New Orleans, LA 70148, USA   Email: mtrudell@uno.edu
,
Phoebe A. Zito
Department of Chemistry, University of New Orleans, New Orleans, LA 70148, USA   Email: mtrudell@uno.edu
,
Terrell J. Shields Jr.
Department of Chemistry, University of New Orleans, New Orleans, LA 70148, USA   Email: mtrudell@uno.edu
,
Mark L. Trudell*
Department of Chemistry, University of New Orleans, New Orleans, LA 70148, USA   Email: mtrudell@uno.edu
› Author Affiliations
Further Information

Publication History

Received: 15 June 2018

Accepted after revision: 18 July 2018

Publication Date:
14 August 2018 (online)


Abstract

An efficient method for the construction of the 5-fluoro-4-hydroxypentyl side chain common to a number of synthetic cannabinoid metabolites was developed. A series of hydroxyl protecting groups was examined to assess the viability as orthogonal protecting groups for epoxidation and regioselective hydrofluorination. The 1-[5-fluoro-4-(diphenyl-tert-butylsilyloxy)]pentyl tosylate was prepared in 67% overall yield (six steps) from pent-4-en-1-ol and was employed for the synthesis of the 4-hydroxy metabolites of the synthetic cannabinoid 5F-APINACA and CUMYL-5F-PINACA.

Supporting Information

 
  • References

  • 1 Makriyanis A. Liu Q. Yale GD. PCT Int. Appl WO2003035005, 2003
  • 2 Gandhi AS. Zhu M. Pang S. Wohlfarth A. Scheidweiler KB. Liu H.-F. Huestis MA. AAPS J 2013; 15: 1091
  • 3 Bowden M. Williamson J. PCT Int. Appl WO2014167530A1, 2014
  • 4 Longworth M. Banister SM. Boyd R. Kevin RC. Connor M. McGregor IS. Kassiou M. ACS Chem. Neurosci. 2017; 8: 2159
    • 5a Understanding the synthetic drug market: the NPS Factor, Global SMART Update. Vol. 19. NODC; Vienna: 2018. https://www.unodc.org/ documents/scientific/Global_Smart_Update_2018_Vol.19.pdf
    • 5b Synthetic cannabinoids: Key facts about the largest and most dynamic group of NPS, Global SMART Update. Vol. 13. NODC; Vienna: 2015. https://www.unodc.org/documents/scientific/Global_ SMART_Update_13_web.pdf
    • 6a Weinstien AM. Rosca P. Fattore L. London ED. Front. Psychiatry 2017; 8: 1
    • 6b Smith JP. Sutcliffe OB. Banks CE. Analyst 2015; 140: 4932
  • 7 Fantegrossi WE. Moran JH. Radominska-Pandya A. Prather PL. Life Sci. 2014; 97: 45
  • 8 ElSohly MA. Gul W. Wanas AS. Radwan MM. Life Sci. 2014; 97: 78
  • 9 Holm NB. Pedersen AJ. Dalsgaard PW. Linnet K. Drug Test Anal. 2015; 7: 199
  • 10 Staeheli SN. Poetzsch M. Veloso VP. Bovens M. Bissig C. Steuer AE. Kraemer T. Drug Test Anal. 2018; 10: 148
  • 11 Ginotra SK. Friest JA. Berkowitz DB. Org. Lett. 2012; 14: 968
  • 12 Hoveyda H. Vezina M. Org. Lett. 2005; 7: 2113
  • 13 Clavier H. Nolan SP. Mauduit M. Organometallics 2008; 27: 2287
  • 14 Hanzlova E. Vana J. Shaffer C. Roithova J. Martinu T. Org. Lett. 2014; 16: 5485
  • 15 Koga I. Funakoshi K. Matsuda A. Sakai K. Tetrahedron: Asymmetry 1993; 4: 1857
  • 16 Shimizu A. Hayashi R. Ashikari Y. Nokami T. Yoshia J.-I. Beilstein J. Org. Chem. 2015; 11: 242
  • 17 Palmer C. Morra NA. Stevens A. Bajtos B. Machin B. Pagenkopf B. Org. Lett. 2009; 11: 5614
  • 18 Landini D. Albanese D. Penso M. Tetrahedron 1992; 48: 4163
  • 19 Muehlbacher M. Poulter CD. J. Org. Chem. 1988; 53: 1026