Subscribe to RSS
DOI: 10.1055/s-0037-1603952
Single Gene Causes of Stroke
Publication History
Publication Date:
31 July 2017 (online)
Abstract
Though rare, monogenic causes of stroke are recognizable by key clinical and radiographic features. A lack of epidemiological data leaves their true incidence unknown, but the most common monogenetic causes of stroke are sickle cell disease, cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), Fabry's disease, and cerebral cavernous malformations. In this article, the author covers the epidemiology, clinical features, and treatment of those diseases as well as other well-described monogenic causes of ischemic and hemorrhagic stroke. A “shotgun” approach to genetic testing should be avoided in favor of targeted testing that can provide a higher yield. Neurologists caring for stroke patients should be familiar with these monogenic causes of stroke, as heightened awareness and an armamentarium of additional diagnostic techniques will allow neurologists to diagnose correctly, implement individual distinct treatment paradigms, and provide future risk assessment.
-
References
- 1 Bersano A, Markus HS, Quaglini S. , et al; Lombardia GENS Group*. Clinical pregenetic screening for stroke monogenic diseases: results from Lombardia GENS Registry. Stroke 2016; 47 (07) 1702-1709
- 2 Biegstraaten M, Arngrímsson R, Barbey F. , et al. Recommendations for Initiation and Cessation of Enzyme Replacement Therapy in Patients with Fabry Disease: the European Fabry Working Group Consensus Document. Orphanet J Rare Dis 2015; 10: 36
- 3 Dubuc V, Moore DF, Gioia LC, Saposnik G, Selchen D, Lanthier S. Prevalence of Fabry disease in young patients with cryptogenic ischemic stroke. J Stroke Cerebrovasc Dis 2013; 22 (08) 1288-1292
- 4 Fazekas F, Enzinger C, Schmidt R. , et al; SIFAP 1 Investigators. Brain magnetic resonance imaging findings fail to suspect Fabry disease in young patients with an acute cerebrovascular event. Stroke 2015; 46 (06) 1548-1553
- 5 Burlina AP, Manara R, Caillaud C. , et al. The pulvinar sign: frequency and clinical correlations in Fabry disease. J Neurol 2008; 255 (05) 738-744
- 6 Mehta A, Beck M, Elliott P. , et al; Fabry Outcome Survey investigators. Enzyme replacement therapy with agalsidase alfa in patients with Fabry's disease: an analysis of registry data. Lancet 2009; 374 (9706): 1986-1996
- 7 Fellgiebel A, Gartenschläger M, Wildberger K, Scheurich A, Desnick RJ, Sims K. Enzyme replacement therapy stabilized white matter lesion progression in Fabry disease. Cerebrovasc Dis 2014; 38 (06) 448-456
- 8 Germain DP, Charrow J, Desnick RJ. , et al. Ten-year outcome of enzyme replacement therapy with agalsidase beta in patients with Fabry disease. J Med Genet 2015; 52 (05) 353-358
- 9 Arends M, Hollak CE, Biegstraaten M. Quality of life in patients with Fabry disease: a systematic review of the literature. Orphanet J Rare Dis 2015; 10: 77
- 10 Rombach SM, Hollak CE, Linthorst GE, Dijkgraaf MG. Cost-effectiveness of enzyme replacement therapy for Fabry disease. Orphanet J Rare Dis 2013; 8: 29
- 11 Moreton FC, Razvi SS, Davidson R, Muir KW. Changing clinical patterns and increasing prevalence in CADASIL. Acta Neurol Scand 2014; 130 (03) 197-203
- 12 Dong Y, Hassan A, Zhang Z, Huber D, Dalageorgou C, Markus HS. Yield of screening for CADASIL mutations in lacunar stroke and leukoaraiosis. Stroke 2003; 34 (01) 203-205
- 13 Chabriat H, Joutel A, Dichgans M, Tournier-Lasserve E, Bousser MG. Cadasil. Lancet Neurol 2009; 8 (07) 643-653
- 14 Sangle N, Baringer JR, Majersik J, DeWitt LD. CADASIL with multiorgan involvement: a complete autopsy examination report. Can J Neurol Sci 2016; 43 (01) 202-205
- 15 Tan RY, Markus HS. CADASIL: migraine, encephalopathy, stroke and their inter-relationships. PLoS One 2016; 11 (06) e0157613
- 16 Smith EE, Saposnik G, Biessels GJ. , et al; American Heart Association Stroke Council; Council on Cardiovascular Radiology and Intervention; Council on Functional Genomics and Translational Biology; and Council on Hypertension. Prevention of Stroke in Patients With Silent Cerebrovascular Disease: A Scientific Statement for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke 2017; 48 (02) e44-e71
- 17 Roeben B, Uhrig S, Bender B, Synofzik M. Teaching NeuroImages: When alopecia and disk herniations meet vascular leukoencephalopathy: CARASIL. Neurology 2016; 86 (15) e166-e167
- 18 Shiga A, Nozaki H, Yokoseki A. , et al. Cerebral small-vessel disease protein HTRA1 controls the amount of TGF-β1 via cleavage of proTGF-β1. Hum Mol Genet 2011; 20 (09) 1800-1810
- 19 Nozaki H, Kato T, Nihonmatsu M. , et al. Distinct molecular mechanisms of HTRA1 mutants in manifesting heterozygotes with CARASIL. Neurology 2016; 86 (21) 1964-1974
- 20 Dhamija R, Schiff D, Lopes MB, Jen JC, Lin DD, Worrall BB. Evolution of brain lesions in a patient with TREX1 cerebroretinal vasculopathy. Neurology 2015; 85 (18) 1633-1634
- 21 Richards A, van den Maagdenberg AM, Jen JC. , et al. C-terminal truncations in human 3′-5′ DNA exonuclease TREX1 cause autosomal dominant retinal vasculopathy with cerebral leukodystrophy. Nat Genet 2007; 39 (09) 1068-1070
- 22 Kernt M, Gschwendtner A, Neubauer AS, Dichgans M, Haritoglou C. Effects of intravitreal bevacizumab treatment on proliferative retinopathy in a patient with cerebroretinal vasculopathy. J Neurol 2010; 257 (07) 1213-1214
- 23 Goto Y, Horai S, Matsuoka T. , et al. Mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS): a correlative study of the clinical features and mitochondrial DNA mutation. Neurology 1992; 42 (3 Pt 1): 545-550
- 24 Yatsuga S, Povalko N, Nishioka J. , et al; Taro Matsuoka for MELAS Study Group in Japan. MELAS: a nationwide prospective cohort study of 96 patients in Japan. Biochim Biophys Acta 2012; 1820 (05) 619-624
- 25 Ciolli L, Pescini F, Salvadori E. , et al. Influence of vascular risk factors and neuropsychological profile on functional performances in CADASIL: results from the MIcrovascular LEukoencephalopathy Study (MILES). Eur J Neurol 2014; 21 (01) 65-71
- 26 Tatlisumak T, Putaala J, Innilä M. , et al. Frequency of MELAS main mutation in a phenotype-targeted young ischemic stroke patient population. J Neurol 2016; 263 (02) 257-262
- 27 Manwaring N, Jones MM, Wang JJ. , et al. Population prevalence of the MELAS A3243G mutation. Mitochondrion 2007; 7 (03) 230-233
- 28 Cai SS, von Coelln R, Kouo TJ. Migratory stroke-like lesions in a case of adult-onset mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome and a review of imaging findings. Radiol Case Rep 2016; 11 (04) 425-429
- 29 Yoshida T, Ouchi A, Miura D. , et al. MELAS and reversible vasoconstriction of the major cerebral arteries. Intern Med 2013; 52 (12) 1389-1392
- 30 Nozaki H, Sekine Y, Fukutake T. , et al. Characteristic features and progression of abnormalities on MRI for CARASIL. Neurology 2015; 85 (05) 459-463
- 31 Hara K, Shiga A, Fukutake T. , et al. Association of HTRA1 mutations and familial ischemic cerebral small-vessel disease. N Engl J Med 2009; 360 (17) 1729-1739
- 32 Pavlakis SG, Phillips PC, DiMauro S, De Vivo DC, Rowland LP. Mitochondrial myopathy, encephalopathy, lactic acidosis, and strokelike episodes: a distinctive clinical syndrome. Ann Neurol 1984; 16 (04) 481-488
- 33 Goodfellow JA, Dani K, Stewart W. , et al. Mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes: an important cause of stroke in young people. Postgrad Med J 2012; 88 (1040): 326-334
- 34 Kaufmann P, Engelstad K, Wei Y. , et al. Natural history of MELAS associated with mitochondrial DNA m.3243A>G genotype. Neurology 2011; 77 (22) 1965-1971
- 35 Goto Y, Nonaka I, Horai S. A mutation in the tRNA(Leu)(UUR) gene associated with the MELAS subgroup of mitochondrial encephalomyopathies. Nature 1990; 348 (6302): 651-653
- 36 Wang YX, Le WD. Progress in diagnosing mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes. Chin Med J (Engl) 2015; 128 (13) 1820-1825
- 37 Stacpoole PW. Why are there no proven therapies for genetic mitochondrial diseases?. Mitochondrion 2011; 11 (05) 679-685
- 38 Pfeffer G, Majamaa K, Turnbull DM, Thorburn D, Chinnery PF. Treatment for mitochondrial disorders. Cochrane Database Syst Rev 2012; (04) CD004426
- 39 El-Hattab AW, Emrick LT, Hsu JW. , et al. Impaired nitric oxide production in children with MELAS syndrome and the effect of arginine and citrulline supplementation. Mol Genet Metab 2016; 117 (04) 407-412
- 40 Rodan LH, Wells GD, Banks L, Thompson S, Schneiderman JE, Tein I. L-Arginine affects aerobic capacity and muscle metabolism in MELAS (mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes) syndrome. PLoS One 2015; 10 (05) e0127066
- 41 Sudo A, Sano H, Kawamura N. [Determination of the critical time point for efficacy of L-arginine infusion therapy in a case of MELAS with frequent stroke-like episodes]. No To Hattatsu 2014; 46 (01) 39-43
- 42 El-Koussy M, Stepper F, Spreng A. , et al. Incidence, clinical presentation and imaging findings of cavernous malformations of the CNS. A twenty-year experience. Swiss Med Wkly 2011; 141: w13172
- 43 Kim J. Introduction to cerebral cavernous malformation: a brief review. BMB Rep 2016; 49 (05) 255-262
- 44 Moore SA, Brown Jr RD, Christianson TJ, Flemming KD. Long-term natural history of incidentally discovered cavernous malformations in a single-center cohort. J Neurosurg 2014; 120 (05) 1188-1192
- 45 Mouchtouris N, Chalouhi N, Chitale A. , et al. Management of cerebral cavernous malformations: from diagnosis to treatment. Sci World J 2015; 2015: 808314
- 46 Zabramski JM, Wascher TM, Spetzler RF. , et al. The natural history of familial cavernous malformations: results of an ongoing study. J Neurosurg 1994; 80 (03) 422-432
- 47 Zabramski JM, Kalani MY, Filippidis AS, Spetzler RF. Propranolol Treatment of Cavernous Malformations with Symptomatic Hemorrhage. World Neurosurg 2016; 88: 631-639
- 48 Choquet H, Pawlikowska L, Lawton MT, Kim H. Genetics of cerebral cavernous malformations: current status and future prospects. J Neurosurg Sci 2015; 59 (03) 211-220
- 49 Denier C, Labauge P, Bergametti F. , et al; Société Française de Neurochirurgie. Genotype-phenotype correlations in cerebral cavernous malformations patients. Ann Neurol 2006; 60 (05) 550-556
- 50 McDonald DA, Shi C, Shenkar R. , et al. Lesions from patients with sporadic cerebral cavernous malformations harbor somatic mutations in the CCM genes: evidence for a common biochemical pathway for CCM pathogenesis. Hum Mol Genet 2014; 23 (16) 4357-4370
- 51 Sahoo T, Johnson EW, Thomas JW. , et al. Mutations in the gene encoding KRIT1, a Krev-1/rap1a binding protein, cause cerebral cavernous malformations (CCM1). Hum Mol Genet 1999; 8 (12) 2325-2333
- 52 Labauge P, Brunereau L, Laberge S, Houtteville JP. Prospective follow-up of 33 asymptomatic patients with familial cerebral cavernous malformations. Neurology 2001; 57 (10) 1825-1828
- 53 Reinhard M, Schuchardt F, Meckel S. , et al. Propranolol stops progressive multiple cerebral cavernoma in an adult patient. J Neurol Sci 2016; 367: 15-17
- 54 Moultrie F, Horne MA, Josephson CB. , et al; Scottish Audit of Intracranial Vascular Malformations (SAIVMs) steering committee and collaborators. Outcome after surgical or conservative management of cerebral cavernous malformations. Neurology 2014; 83 (07) 582-589
- 55 Dammann P, Wrede K, Jabbarli R. , et al. Outcome after conservative management or surgical treatment for new-onset epilepsy in cerebral cavernous malformation. J Neurosurg 2017; 126 (04) 1303-1311
- 56 Li D, Hao SY, Jia GJ, Wu Z, Zhang LW, Zhang JT. Hemorrhage risks and functional outcomes of untreated brainstem cavernous malformations. J Neurosurg 2014; 121 (01) 32-41
- 57 Rannikmäe K, Samarasekera N, Martînez-Gonzâlez NA, Al-Shahi Salman R, Sudlow CL. Genetics of cerebral amyloid angiopathy: systematic review and meta-analysis. J Neurol Neurosurg Psychiatry 2013; 84 (08) 901-908
- 58 Revesz T, Holton JL, Lashley T. , et al. Genetics and molecular pathogenesis of sporadic and hereditary cerebral amyloid angiopathies. Acta Neuropathol 2009; 118 (01) 115-130
- 59 Iwanowski P, Kozubski W, Losy J. Iowa-type hereditary cerebral amyloid angiopathy in a Polish family. J Neurol Sci 2015; 356 (1-2): 202-204
- 60 Biffi A, Plourde A, Shen Y. , et al. Screening for familial APP mutations in sporadic cerebral amyloid angiopathy. PLoS One 2010; 5 (11) e13949
- 61 van Etten ES, Gurol ME, van der Grond J. , et al. Recurrent hemorrhage risk and mortality in hereditary and sporadic cerebral amyloid angiopathy. Neurology 2016; 87 (14) 1482-1487
- 62 Lanfranconi S, Markus HS. COL4A1 mutations as a monogenic cause of cerebral small vessel disease: a systematic review. Stroke 2010; 41 (08) e513-e518
- 63 Vahedi K, Kubis N, Boukobza M. , et al. COL4A1 mutation in a patient with sporadic, recurrent intracerebral hemorrhage. Stroke 2007; 38 (05) 1461-1464
- 64 Fujimura M, Tominaga T. Diagnosis of moyamoya disease: international standard and regional differences. Neurol Med Chir (Tokyo) 2015; 55 (03) 189-193
- 65 Mossa-Basha M, de Havenon A, Becker KJ. , et al. Added value of vessel wall magnetic resonance imaging in the differentiation of moyamoya vasculopathies in a non-Asian cohort. Stroke 2016; 47 (07) 1782-1788
- 66 Takekawa Y, Umezawa T, Ueno Y, Sawada T, Kobayashi M. Pathological and immunohistochemical findings of an autopsy case of adult moyamoya disease. Neuropathology 2004; 24 (03) 236-242
- 67 Okada Y, Kawamata T, Kawashima A, Yamaguchi K, Ono Y, Hori T. The efficacy of superficial temporal artery-middle cerebral artery anastomosis in patients with moyamoya disease complaining of severe headache. J Neurosurg 2012; 116 (03) 672-679
- 68 Fujimura M, Sonobe S, Nishijima Y. , et al. Genetics and biomarkers of moyamoya disease: significance of rnf213 as a susceptibility gene. J Stroke 2014; 16 (02) 65-72
- 69 Han C, Feng H, Han YQ. , et al. Prospective screening of family members with moyamoya disease patients. PLoS One 2014; 9 (02) e88765
- 70 Patel NN, Mangano FT, Klimo Jr P. Indirect revascularization techniques for treating moyamoya disease. Neurosurg Clin N Am 2010; 21 (03) 553-563
- 71 Miyamoto S, Yoshimoto T, Hashimoto N. , et al; JAM Trial Investigators. Effects of extracranial-intracranial bypass for patients with hemorrhagic moyamoya disease: results of the Japan Adult Moyamoya Trial. Stroke 2014; 45 (05) 1415-1421
- 72 Weatherall DJ. The inherited diseases of hemoglobin are an emerging global health burden. Blood 2010; 115 (22) 4331-4336
- 73 Lorey FW, Arnopp J, Cunningham GC. Distribution of hemoglobinopathy variants by ethnicity in a multiethnic state. Genet Epidemiol 1996; 13 (05) 501-512
- 74 Wang Y, Kennedy J, Caggana M. , et al. Sickle cell disease incidence among newborns in New York State by maternal race/ethnicity and nativity. Genet Med 2013; 15 (03) 222-228
- 75 DeBaun MR, Kirkham FJ. Central nervous system complications and management in sickle cell disease. Blood 2016; 127 (07) 829-838
- 76 van Beers EJ, Yang Y, Raghavachari N. , et al. Iron, inflammation, and early death in adults with sickle cell disease. Circ Res 2015; 116 (02) 298-306
- 77 Gladwin MT. Cardiovascular complications and risk of death in sickle-cell disease. Lancet 2016; 387 (10037): 2565-2574
- 78 Adams RJ, McKie VC, Hsu L. , et al. Prevention of a first stroke by transfusions in children with sickle cell anemia and abnormal results on transcranial Doppler ultrasonography. N Engl J Med 1998; 339 (01) 5-11
- 79 Adams RJ, Brambilla D. ; Optimizing Primary Stroke Prevention in Sickle Cell Anemia (STOP 2) Trial Investigators. Discontinuing prophylactic transfusions used to prevent stroke in sickle cell disease. N Engl J Med 2005; 353 (26) 2769-2778
- 80 Ware RE, Helms RW. ; SWiTCH Investigators. Stroke With Transfusions Changing to Hydroxyurea (SWiTCH). Blood 2012; 119 (17) 3925-3932
- 81 DeBaun MR, Gordon M, McKinstry RC. , et al. Controlled trial of transfusions for silent cerebral infarcts in sickle cell anemia. N Engl J Med 2014; 371 (08) 699-710
- 82 Ware RE, Davis BR, Schultz WH. , et al. Hydroxycarbamide versus chronic transfusion for maintenance of transcranial Doppler flow velocities in children with sickle cell anaemia-TCD With Transfusions Changing to Hydroxyurea (TWiTCH): a multicentre, open-label, phase 3, non-inferiority trial. Lancet 2016; 387 (10019): 661-670
- 83 Enninful-Eghan H, Moore RH, Ichord R, Smith-Whitley K, Kwiatkowski JL. Transcranial Doppler ultrasonography and prophylactic transfusion program is effective in preventing overt stroke in children with sickle cell disease. J Pediatr 2010; 157 (03) 479-484
- 84 Yawn BP, Buchanan GR, Afenyi-Annan AN. , et al. Management of sickle cell disease: summary of the 2014 evidence-based report by expert panel members. JAMA 2014; 312 (10) 1033-1048
- 85 Calvet D, Bernaudin F, Gueguen A. , et al. First ischemic stroke in sickle-cell disease: are there any adult specificities?. Stroke 2015; 46 (08) 2315-2317
- 86 Nabavizadeh SA, Vossough A, Ichord RN. , et al. Intracranial aneurysms in sickle cell anemia: clinical and imaging findings. J Neurointerv Surg 2016; 8 (04) 434-440
- 87 Brinjikji W, Iyer VN, Sorenson T, Lanzino G. Cerebrovascular manifestations of hereditary hemorrhagic telangiectasia. Stroke 2015; 46 (11) 3329-3337
- 88 Donaldson JW, McKeever TM, Hall IP, Hubbard RB, Fogarty AW. The UK prevalence of hereditary haemorrhagic telangiectasia and its association with sex, socioeconomic status and region of residence: a population-based study. Thorax 2014; 69 (02) 161-167
- 89 Shovlin CL, Guttmacher AE, Buscarini E. , et al. Diagnostic criteria for hereditary hemorrhagic telangiectasia (Rendu-Osler-Weber syndrome). Am J Med Genet 2000; 91 (01) 66-67
- 90 National Institutes of Health, US Library of Medicine. Genetics home reference: your guide to understanding genetic conditions. Hereditary Hemorrhagic Telangiectasia [online]. Available at: https://ghr.nlm.nih.gov/condition/hereditary-hemorrhagic-telangiectasia . Accessed April 27, 2017
- 91 McDonald J, Wooderchak-Donahue W, VanSant Webb C, Whitehead K, Stevenson DA, Bayrak-Toydemir P. Hereditary hemorrhagic telangiectasia: genetics and molecular diagnostics in a new era. Front Genet 2015; 6: 1
- 92 Plauchu H, de Chadarévian JP, Bideau A, Robert JM. Age-related clinical profile of hereditary hemorrhagic telangiectasia in an epidemiologically recruited population. Am J Med Genet 1989; 32 (03) 291-297
- 93 Faughnan ME, Palda VA, Garcia-Tsao G. , et al; HHT Foundation International - Guidelines Working Group. International guidelines for the diagnosis and management of hereditary haemorrhagic telangiectasia. J Med Genet 2011; 48 (02) 73-87
- 94 Arizmendez NP, Rudmik L, Poetker DM. Intravenous bevacizumab for complications of hereditary hemorrhagic telangiectasia: a review of the literature. Int Forum Allergy Rhinol 2015; 5 (11) 1042-1047
- 95 Kjeldsen AD, Tørring PM, Nissen H, Andersen PE. Cerebral abscesses among Danish patients with hereditary haemorrhagic telangiectasia. Acta Neurol Scand 2014; 129 (03) 192-197
- 96 Angriman F, Ferreyro BL, Wainstein EJ, Serra MM. Pulmonary arteriovenous malformations and embolic complications in patients with hereditary hemorrhagic telangiectasia. Arch Bronconeumol 2014; 50 (07) 301-304
- 97 Shovlin CL, Jackson JE, Bamford KB. , et al. Primary determinants of ischaemic stroke/brain abscess risks are independent of severity of pulmonary arteriovenous malformations in hereditary haemorrhagic telangiectasia. Thorax 2008; 63 (03) 259-266
- 98 Fulbright RK, Chaloupka JC, Putman CM. , et al. MR of hereditary hemorrhagic telangiectasia: prevalence and spectrum of cerebrovascular malformations. AJNR Am J Neuroradiol 1998; 19 (03) 477-484
- 99 Woodall MN, McGettigan M, Figueroa R, Gossage JR, Alleyne Jr CH. Cerebral vascular malformations in hereditary hemorrhagic telangiectasia. J Neurosurg 2014; 120 (01) 87-92