Semin Reprod Med 2016; 34(01): 036-041
DOI: 10.1055/s-0035-1570028
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Placental Epigenetics in Children's Environmental Health

Carmen J. Marsit
1   Department of Pharmacology and Toxicology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
2   Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
› Author Affiliations
Further Information

Publication History

Publication Date:
22 December 2015 (online)

Abstract

There is a growing interest in understanding the mechanisms that drive the developmental origins of health and disease, and the role of epigenetic regulation has risen to the forefront of these studies. In particular, the placenta may be a model organ to consider as a mediator of the impact of the environment on developmental programming of children's health, as this organ plays a critical role in directing development and regulating the fetal environment. Several recent studies have begun to examine how environmental toxicant exposures can impact the placental epigenome, focusing on studies of DNA methylation and microRNA expression. This review highlights several of these studies and emphasizes the potential the placenta may hold on the broader understanding of the impact of the intrauterine environment on long-term health.

 
  • References

  • 1 Auger N, Kuehne E, Goneau M, Daniel M. Preterm birth during an extreme weather event in Québec, Canada: a “natural experiment”. Matern Child Health J 2011; 15 (7) 1088-1096
  • 2 Dancause KN, Laplante DP, Oremus C, Fraser S, Brunet A, King S. Disaster-related prenatal maternal stress influences birth outcomes: Project Ice Storm. Early Hum Dev 2011; 87 (12) 813-820
  • 3 Dancause KN, Laplante DP, Fraser S , et al. Prenatal exposure to a natural disaster increases risk for obesity in 5½-year-old children. Pediatr Res 2012; 71 (1) 126-131
  • 4 King S, Dancause K, Turcotte-Tremblay AM, Veru F, Laplante DP. Using natural disasters to study the effects of prenatal maternal stress on child health and development. Birth Defects Res C Embryo Today 2012; 96 (4) 273-288
  • 5 Stein Z, Susser M. The Dutch famine, 1944–1945, and the reproductive process. II. Interrelations of caloric rations and six indices at birth. Pediatr Res 1975; 9 (2) 76-83
  • 6 Ravelli GP, Stein ZA, Susser MW. Obesity in young men after famine exposure in utero and early infancy. N Engl J Med 1976; 295 (7) 349-353
  • 7 Lumey LH, Ravelli AC, Wiessing LG, Koppe JG, Treffers PE, Stein ZA. The Dutch famine birth cohort study: design, validation of exposure, and selected characteristics of subjects after 43 years follow-up. Paediatr Perinat Epidemiol 1993; 7 (4) 354-367
  • 8 Ravelli AC, van der Meulen JH, Michels RP , et al. Glucose tolerance in adults after prenatal exposure to famine. Lancet 1998; 351 (9097) 173-177
  • 9 Barker DJ. The fetal and infant origins of adult disease. BMJ 1990; 301 (6761) 1111
  • 10 Barker DJ, Godfrey KM, Osmond C, Bull A. The relation of fetal length, ponderal index and head circumference to blood pressure and the risk of hypertension in adult life. Paediatr Perinat Epidemiol 1992; 6 (1) 35-44
  • 11 Hales CN, Barker DJ, Clark PM , et al. Fetal and infant growth and impaired glucose tolerance at age 64. BMJ 1991; 303 (6809) 1019-1022
  • 12 Thompson C, Syddall H, Rodin I, Osmond C, Barker DJ. Birth weight and the risk of depressive disorder in late life. Br J Psychiatry 2001; 179: 450-455
  • 13 Wahlbeck K, Forsén T, Osmond C, Barker DJ, Eriksson JG. Association of schizophrenia with low maternal body mass index, small size at birth, and thinness during childhood. Arch Gen Psychiatry 2001; 58 (1) 48-52
  • 14 Barker DJ, Bull AR, Osmond C, Simmonds SJ. Fetal and placental size and risk of hypertension in adult life. BMJ 1990; 301 (6746) 259-262
  • 15 Godfrey KM, Redman CW, Barker DJ, Osmond C. The effect of maternal anaemia and iron deficiency on the ratio of fetal weight to placental weight. Br J Obstet Gynaecol 1991; 98 (9) 886-891
  • 16 Barker DJ, Osmond C, Thornburg KL, Kajantie E, Eriksson JG. The shape of the placental surface at birth and colorectal cancer in later life. Am J Hum Biol 2013; 25 (4) 566-568
  • 17 Barker DJ, Thornburg KL. Placental programming of chronic diseases, cancer and lifespan: a review. Placenta 2013; 34 (10) 841-845
  • 18 Barker DJ, Larsen G, Osmond C, Thornburg KL, Kajantie E, Eriksson JG. The placental origins of sudden cardiac death. Int J Epidemiol 2012; 41 (5) 1394-1399
  • 19 Baptiste-Roberts K, Salafia CM, Nicholson WK, Duggan A, Wang NY, Brancati FL. Gross placental measures and childhood growth. J Matern Fetal Neonatal Med 2009; 22 (1) 13-23
  • 20 Salafia CM, Zhang J, Charles AK , et al. Placental characteristics and birthweight. Paediatr Perinat Epidemiol 2008; 22 (3) 229-239
  • 21 Nordenvall M, Sandstedt B, Ulmsten U. Relationship between placental shape, cord insertion, lobes and gestational outcome. Acta Obstet Gynecol Scand 1988; 67 (7) 611-616
  • 22 Marsit CJ. Influence of environmental exposure on human epigenetic regulation. J Exp Biol 2015; 218 (Pt 1): 71-79
  • 23 Robins JC, Marsit CJ, Padbury JF, Sharma SS. Endocrine disruptors, environmental oxygen, epigenetics and pregnancy. Front Biosci (Elite Ed) 2011; 3: 690-700
  • 24 Gude NM, Roberts CT, Kalionis B, King RG. Growth and function of the normal human placenta. Thromb Res 2004; 114 (5–6) 397-407
  • 25 Iglesias-Platas I, Martin-Trujillo A, Petazzi P, Guillaumet-Adkins A, Esteller M, Monk D. Altered expression of the imprinted transcription factor PLAGL1 deregulates a network of genes in the human IUGR placenta. Hum Mol Genet 2014; 23 (23) 6275-6285
  • 26 Mandò C, De Palma C, Stampalija T , et al. Placental mitochondrial content and function in intrauterine growth restriction and preeclampsia. Am J Physiol Endocrinol Metab 2014; 306 (4) E404-E413
  • 27 Zhao M, Yin Y, Guo F, Wang J, Wang K, Chen Q. Placental expression of VEGF is increased in pregnancies with hydatidiform mole: possible association with developing very early onset preeclampsia. Early Hum Dev 2013; 89 (8) 583-588
  • 28 Yang M, Ha C, Liu D , et al. IgG expression in trophoblasts derived from placenta and gestational trophoblastic disease and its role in regulating invasion. Immunol Res 2014; 60 (1) 91-104
  • 29 Dekker Nitert M, Barrett HL, Kubala MH , et al. Increased placental expression of fibroblast growth factor 21 in gestational diabetes mellitus. J Clin Endocrinol Metab 2014; 99 (4) E591-E598
  • 30 Frommer M, McDonald LE, Millar DS , et al. A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci USA 1992; 89 (5) 1827-1831
  • 31 Robinson WP, Price EM. The human placental methylome. Cold Spring Harb Perspect Med 2015; 5 (5) a023044
  • 32 Koukoura O, Sifakis S, Spandidos DA. DNA methylation in the human placenta and fetal growth [review]. Mol Med Rep 2012; 5 (4) 883-889
  • 33 Maccani JZ, Koestler DC, Houseman EA, Marsit CJ, Kelsey KT. Placental DNA methylation alterations associated with maternal tobacco smoking at the RUNX3 gene are also associated with gestational age. Epigenomics 2013; 5 (6) 619-630
  • 34 Novakovic B, Yuen RK, Gordon L , et al. Evidence for widespread changes in promoter methylation profile in human placenta in response to increasing gestational age and environmental/stochastic factors. BMC Genomics 2011; 12: 529
  • 35 Banister CE, Koestler DC, Maccani MA, Padbury JF, Houseman EA, Marsit CJ. Infant growth restriction is associated with distinct patterns of DNA methylation in human placentas. Epigenetics 2011; 6 (7) 920-927
  • 36 Lambertini L, Lee TL, Chan WY , et al. Differential methylation of imprinted genes in growth-restricted placentas. Reprod Sci 2011; 18 (11) 1111-1117
  • 37 Chu T, Bunce K, Shaw P , et al. Comprehensive analysis of preeclampsia-associated DNA methylation in the placenta. PLoS ONE 2014; 9 (9) e107318
  • 38 Liu L, Zhang X, Rong C , et al. Distinct DNA methylomes of human placentas between pre-eclampsia and gestational diabetes mellitus. Cell Physiol Biochem 2014; 34 (6) 1877-1889
  • 39 Qi YH, Teng F, Zhou Q , et al. Unmethylated-maspin DNA in maternal plasma is associated with severe preeclampsia. Acta Obstet Gynecol Scand 2015; 94 (9) 983-988
  • 40 Than NG, Romero R, Xu Y , et al. Evolutionary origins of the placental expression of chromosome 19 cluster galectins and their complex dysregulation in preeclampsia. Placenta 2014; 35 (11) 855-865
  • 41 Anton L, Brown AG, Bartolomei MS, Elovitz MA. Differential methylation of genes associated with cell adhesion in preeclamptic placentas. PLoS ONE 2014; 9 (6) e100148
  • 42 Rong C, Cui X, Chen J , et al. DNA methylation profiles in placenta and its association with gestational diabetes mellitus. Exp Clin Endocrinol Diabetes 2015; 123: 282-288
  • 43 Finer S, Mathews C, Lowe R , et al. Maternal gestational diabetes is associated with genome-wide DNA methylation variation in placenta and cord blood of exposed offspring. Hum Mol Genet 2015; 24 (11) 3021-3029
  • 44 Desgagné V, Hivert MF, St-Pierre J , et al. Epigenetic dysregulation of the IGF system in placenta of newborns exposed to maternal impaired glucose tolerance. Epigenomics 2014; 6 (2) 193-207
  • 45 Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993; 75 (5) 843-854
  • 46 Du T, Zamore PD. Beginning to understand microRNA function. Cell Res 2007; 17 (8) 661-663
  • 47 Meza-Sosa KF, Valle-García D, Pedraza-Alva G, Pérez-Martínez L. Role of microRNAs in central nervous system development and pathology. J Neurosci Res 2012; 90 (1) 1-12
  • 48 Miska EA. How microRNAs control cell division, differentiation and death. Curr Opin Genet Dev 2005; 15 (5) 563-568
  • 49 Donker RB, Mouillet JF, Chu T , et al. The expression profile of C19MC microRNAs in primary human trophoblast cells and exosomes. Mol Hum Reprod 2012; 18 (8) 417-424
  • 50 Zhang R, Wang YQ, Su B. Molecular evolution of a primate-specific microRNA family. Mol Biol Evol 2008; 25 (7) 1493-1502
  • 51 Wang W, Feng L, Zhang H , et al. Preeclampsia up-regulates angiogenesis-associated microRNA (i.e., miR-17, -20a, and -20b) that target ephrin-B2 and EPHB4 in human placenta. J Clin Endocrinol Metab 2012; 97 (6) E1051-E1059
  • 52 Guo L, Yang Q, Lu J , et al. A comprehensive survey of miRNA repertoire and 3′ addition events in the placentas of patients with pre-eclampsia from high-throughput sequencing. PLoS ONE 2011; 6 (6) e21072
  • 53 Pineles BL, Romero R, Montenegro D , et al. Distinct subsets of microRNAs are expressed differentially in the human placentas of patients with preeclampsia. Am J Obstet Gynecol 2007; 196 (3) 261.e1-261.e6
  • 54 Buckberry S, Bianco-Miotto T, Roberts CT. Imprinted and X-linked non-coding RNAs as potential regulators of human placental function. Epigenetics 2014; 9 (1) 81-89
  • 55 Li JY, Yong TY, Michael MZ, Gleadle JM. MicroRNAs: are they the missing link between hypoxia and pre-eclampsia?. Hypertens Pregnancy 2014; 33 (1) 102-114
  • 56 Tang Q, Wu W, Xu X , et al. miR-141 contributes to fetal growth restriction by regulating PLAG1 expression. PLoS ONE 2013; 8 (3) e58737
  • 57 Mouillet JF, Chu T, Sadovsky Y. Expression patterns of placental microRNAs. Birth Defects Res A Clin Mol Teratol 2011; 91 (8) 737-743
  • 58 Sadovsky Y, Mouillet JF, Ouyang Y, Bayer A, Coyne CB. The function of trophomiRs and other microRNAs in the human placenta. Cold Spring Harb Perspect Med 2015; 5 (8) a023036
  • 59 Xie L, Mouillet JF, Chu T , et al. C19MC microRNAs regulate the migration of human trophoblasts. Endocrinology 2014; 155 (12) 4975-4985
  • 60 Mouillet JF, Ouyang Y, Bayer A, Coyne CB, Sadovsky Y. The role of trophoblastic microRNAs in placental viral infection. Int J Dev Biol 2014; 58 (2–4) 281-289
  • 61 Ouyang Y, Mouillet JF, Coyne CB, Sadovsky Y. Review: placenta-specific microRNAs in exosomes—good things come in nano-packages. Placenta 2014; 35 (Suppl): S69-S73
  • 62 Foster WG, Agzarian J. Toward less confusing terminology in endocrine disruptor research. J Toxicol Environ Health B Crit Rev 2008; 11: 152-161
  • 63 Rubin BS. Bisphenol A: an endocrine disruptor with widespread exposure and multiple effects. J Steroid Biochem Mol Biol 2011; 127 (1–2) 27-34
  • 64 Dolinoy DC, Huang D, Jirtle RL. Maternal nutrient supplementation counteracts bisphenol A-induced DNA hypomethylation in early development. Proc Natl Acad Sci USA 2007; 104 (32) 13056-13061
  • 65 Inoue H, Tsuruta A, Kudo S , et al. Bisphenol a glucuronidation and excretion in liver of pregnant and nonpregnant female rats. Drug Metab Dispos 2005; 33 (1) 55-59
  • 66 Mahalingaiah S, Meeker JD, Pearson KR , et al. Temporal variability and predictors of urinary bisphenol A concentrations in men and women. Environ Health Perspect 2008; 116 (2) 173-178
  • 67 Nahar MS, Kim JH, Sartor MA, Dolinoy DC. Bisphenol A-associated alterations in the expression and epigenetic regulation of genes encoding xenobiotic metabolizing enzymes in human fetal liver. Environ Mol Mutagen 2014; 55 (3) 184-195
  • 68 LaRocca J, Binder AM, McElrath TF, Michels KB. The impact of first trimester phthalate and phenol exposure on IGF2/H19 genomic imprinting and birth outcomes. Environ Res 2014; 133: 396-406
  • 69 Nordin M, Bergman D, Halje M, Engström W, Ward A. Epigenetic regulation of the Igf2/H19 gene cluster. Cell Prolif 2014; 47 (3) 189-199
  • 70 Järup L, Åkesson A. Current status of cadmium as an environmental health problem. Toxicol Appl Pharmacol 2009; 238 (3) 201-208
  • 71 Olsson I-M, Bensryd I, Lundh T, Ottosson H, Skerfving S, Oskarsson A. Cadmium in blood and urine—impact of sex, age, dietary intake, iron status, and former smoking—association of renal effects. Environ Health Perspect 2002; 110 (12) 1185-1190
  • 72 Kippler M, Tofail F, Gardner R , et al. Maternal cadmium exposure during pregnancy and size at birth: a prospective cohort study. Environ Health Perspect 2012; 120 (2) 284-289
  • 73 Castillo P, Ibáñez F, Guajardo A, Llanos MN, Ronco AM. Impact of cadmium exposure during pregnancy on hepatic glucocorticoid receptor methylation and expression in rat fetus. PLoS ONE 2012; 7 (9) e44139
  • 74 Yang K, Julan L, Rubio F, Sharma A, Guan H. Cadmium reduces 11 β-hydroxysteroid dehydrogenase type 2 activity and expression in human placental trophoblast cells. Am J Physiol Endocrinol Metab 2006; 290 (1) E135-E142
  • 75 Kippler M, Engström K, Mlakar SJ , et al. Sex-specific effects of early life cadmium exposure on DNA methylation and implications for birth weight. Epigenetics 2013; 8 (5) 494-503
  • 76 Grandjean P, Weihe P, White RF , et al. Cognitive deficit in 7-year-old children with prenatal exposure to methylmercury. Neurotoxicol Teratol 1997; 19 (6) 417-428
  • 77 Counter SA, Buchanan LH. Mercury exposure in children: a review. Toxicol Appl Pharmacol 2004; 198 (2) 209-230
  • 78 Cace IB, Milardovic A, Prpic I , et al. Relationship between the prenatal exposure to low-level of mercury and the size of a newborn's cerebellum. Med Hypotheses 2011; 76 (4) 514-516
  • 79 Gao Y, Yan CH, Tian Y , et al. Prenatal exposure to mercury and neurobehavioral development of neonates in Zhoushan City, China. Environ Res 2007; 105 (3) 390-399
  • 80 Choi BH. The effects of methylmercury on the developing brain. Prog Neurobiol 1989; 32 (6) 447-470
  • 81 Llop S, Guxens M, Murcia M , et al; INMA Project. Prenatal exposure to mercury and infant neurodevelopment in a multicenter cohort in Spain: study of potential modifiers. Am J Epidemiol 2012; 175 (5) 451-465
  • 82 Freire C, Ramos R, Lopez-Espinosa MJ , et al. Hair mercury levels, fish consumption, and cognitive development in preschool children from Granada, Spain. Environ Res 2010; 110 (1) 96-104
  • 83 Rice DC. Evidence for delayed neurotoxicity produced by methylmercury. Neurotoxicology 1996; 17 (3–4) 583-596
  • 84 Karagas MR, Choi AL, Oken E , et al. Evidence on the human health effects of low-level methylmercury exposure. Environ Health Perspect 2012; 120 (6) 799-806
  • 85 Yang J, Jiang Z, Wang Y, Qureshi IA, Wu XD. Maternal-fetal transfer of metallic mercury via the placenta and milk. Ann Clin Lab Sci 1997; 27 (2) 135-141
  • 86 Ilbäck NG, Sundberg J, Oskarsson A. Methyl mercury exposure via placenta and milk impairs natural killer (NK) cell function in newborn rats. Toxicol Lett 1991; 58 (2) 149-158
  • 87 Boadi WY, Urbach J, Brandes JM, Yannai S. In vitro exposure to mercury and cadmium alters term human placental membrane fluidity. Toxicol Appl Pharmacol 1992; 116 (1) 17-23
  • 88 Ask K, Akesson A, Berglund M, Vahter M. Inorganic mercury and methylmercury in placentas of Swedish women. Environ Health Perspect 2002; 110 (5) 523-526
  • 89 Davidson PW, Myers GJ, Weiss B. Mercury exposure and child development outcomes. Pediatrics 2004; 113 (4, Suppl): 1023-1029
  • 90 Takahashi Y, Tsuruta S, Hasegawa J, Kameyama Y, Yoshida M. Release of mercury from dental amalgam fillings in pregnant rats and distribution of mercury in maternal and fetal tissues. Toxicology 2001; 163 (2–3) 115-126
  • 91 Maccani JZ, Koestler DC, Lester B , et al. Placental DNA methylation related to both infant toenail mercury and adverse neurobehavioral outcomes. Environ Health Perspect 2015; 123 (7) 723-729
  • 92 Marsit CJ, Eddy K, Kelsey KT. MicroRNA responses to cellular stress. Cancer Res 2006; 66 (22) 10843-10848
  • 93 Avissar-Whiting M, Veiga KR, Uhl KM , et al. Bisphenol A exposure leads to specific microRNA alterations in placental cells. Reprod Toxicol 2010; 29 (4) 401-406
  • 94 Baccarelli A, Bollati V. Epigenetics and environmental chemicals. Curr Opin Pediatr 2009; 21 (2) 243-251
  • 95 Fabbri M, Urani C, Sacco MG, Procaccianti C, Gribaldo L. Whole genome analysis and microRNAs regulation in HepG2 cells exposed to cadmium. ALTEX 2012; 29 (2) 173-182
  • 96 Kong AP, Xiao K, Choi KC , et al. Associations between microRNA (miR-21, 126, 155 and 221), albuminuria and heavy metals in Hong Kong Chinese adolescents. Clin Chim Acta 2012; 413 (13–14) 1053-1057
  • 97 Bollati V, Marinelli B, Apostoli P , et al. Exposure to metal-rich particulate matter modifies the expression of candidate microRNAs in peripheral blood leukocytes. Environ Health Perspect 2010; 118 (6) 763-768