Synlett 2016; 27(19): 2737-2741
DOI: 10.1055/s-0035-1562535
letter
© Georg Thieme Verlag Stuttgart · New York

Novel Synthesis of α-Keto Esters and Amides by an sp3 C–H Oxidation of Nitromethyl Aryl Ketones Promoted by Ion-Supported (Diacetoxyiodo)benzene

Xiaoying Jiang
Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. of China   Email: xyycz@zjut.edu.cn
,
Bing Gan
Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. of China   Email: xyycz@zjut.edu.cn
,
Jiwei Liu
Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. of China   Email: xyycz@zjut.edu.cn
,
Yuanyuan Xie*
Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. of China   Email: xyycz@zjut.edu.cn
› Author Affiliations
Further Information

Publication History

Received: 29 May 2016

Accepted after revision: 23 July 2016

Publication Date:
05 August 2016 (online)


Abstract

A simple and efficient method is described for the preparation of α-keto esters or amides from nitromethyl aryl ketones. In the presence of nucleophiles (alcohols or amines), the ion-supported (di­acetoxyiodo)benzene-promoted sp3 C–H oxidation of nitromethyl aryl ketones proceeded efficiently under mild conditions to give the corresponding α-keto esters and amides in moderate to good yields. This is the first reported use of (diacetoxyiodo)benzene in the synthesis of α-keto esters and amides. The reaction is ecofriendly and has the ­advantages of mild conditions, short reaction times, and a recyclable reagent.

Supporting Information

Primary Data

 
  • References and Notes

  • 1 Patel DV, Rielly-Gauvin K, Ryono DE, Free CA, Smith SA, Petrillo EW. J. Med. Chem. 1993; 36: 2431
  • 2 Brady SF, Sisko JT, Stauffer KJ, Colton CD, Qiu H, Lewis SD, Ng AS, Shafer JA, Bogusky MJ, Veber DF, Nutt RF. Bioorg. Med. Chem. 1995; 3: 1063
  • 3 Wada CK, Frey RR, Ji ZQ, Curtin ML, Garland RB, Holms JH, Li JL, Pease LJ, Guo J, Glaser KB, Marcotte PA, Richardson PL, Murphy SS, Bouska JJ, Tapang P, Magoc TJ, Albert DH, Davidsen SK, Michaelides MR. Bioorg. Med. Chem. Lett. 2003; 13: 3331
  • 4 Otto HH, Schirmeister T. Chem. Rev. 1997; 97: 133
  • 5 Chen YT, Xie J, Seto CT. J. Org. Chem. 2003; 68: 4123
  • 6 Burkhart JP, Mehdi S, Koehl JR, Angelastro MR, Bey P, Peet NP. Bioorg. Med. Chem. Lett. 1998; 8: 63
  • 7 Colarusso S, Gerlach B, Koch U, Muraglia E, Conte I, Stansfield I, Matassa VG, Narjes F. Bioorg. Med. Chem. Lett. 2002; 12: 705
  • 8 Chiou A, Markidis T, Constantinou-Kokotou V, Verger R, Kokotos G. Org. Lett. 2000; 2: 347
  • 9 Choe Y, Brinen LS, Price MS, Engel JC, Lange M, Grisostomi C, Weston SG, Pallai PV, Cheng H, Hardy LW, Hartsough DS, McMakin M, Tilton RF, Baldino CM, Craik CS. Bioorg. Med. Chem. 2005; 13: 2141
  • 10 Zhang RX, Long Y. Yixue Zongshu 2008; 14: 919
  • 11 Han W, Hu ZL, Jiang XJ, Decicco CP. Bioorg. Med. Chem. Lett. 2000; 10: 711
  • 12 Sheha MM, Mahfouz NM, Hassan HY, Youssef AF, Mimoto T, Kiso Y. Eur. J. Med. Chem. 2000; 35: 887
  • 13 Chen G, Zhang J, Li X, Yao GX, Zhu JT. Zhongguo Yaowu Huaxue Zazhi 2012; 22: 29
  • 14 Ntaganda R, Milovic T, Tiburcio J, Thadani AN. Chem. Commun. 2008; 4052
  • 15 Rambaud A, Bakasse M, Duguay G, Villieras J. Synthesis 1988; 564
    • 16a Wasserman HH, Ho W.-B. J. Org. Chem. 1994; 59: 4364
    • 16b Wong M.-K, Yu C.-W, Yuen W.-H, Yang D. J. Org. Chem. 2001; 66: 3606
    • 16c Lee K. Bull. Korean Chem. Soc. 2010; 31: 2776
  • 17 Zhou T, Chen ZC. J. Chem. Res., Synop. 2001; 116
    • 18a Zhang J, Wei Y, Lin SX, Liang FS, Liu PJ. Org. Biomol. Chem. 2012; 10: 9237
    • 18b Huang X, Li X, Zou M, Pan J, Jiao N. Org. Chem. Front. 2015; 2: 354
    • 18c Xu X, Ding W, Lin Y, Song Q. Org. Lett. 2015; 17: 516
  • 19 Shimizu H, Murakami M. Chem. Commun. 2007; 2855
  • 20 Shaw AY, Denning CR, Hulme C. Tetrahedron Lett. 2012; 53: 4151
  • 21 Guin S, Rout SK, Gogoi A, Ali W, Patel BK. Adv. Synth. Catal. 2014; 356: 2559
    • 22a Kotha SS, Chandrasekar S, Sahu S, Sekar G. Eur. J. Org. Chem. 2014; 7451
    • 22b He Y, Mao J, Rong G, Yan H, Zhang G. Adv. Synth. Catal. 2015; 357: 2125
  • 23 Fan W, Shi D, Feng B. Tetrahedron Lett. 2015; 56: 4638
  • 24 Mupparapu N, Vishwakarma RA, Ahmed QN. Tetrahedron 2015; 71: 3417
  • 25 Reddy SR, Stella S, Chadha A. Synth. Commun. 2012; 42: 3493
  • 26 Stergiou A, Bariotaki A, Kalaitzakis D, Smonou I. J. Org. Chem. 2013; 78: 7268
  • 27 Zhang Z, Su J, Zha Z, Wang Z. Chem. Eur. J. 2013; 19: 17711
  • 28 Zhdankin VV, Stang PJ. Chem. Rev. 2008; 108: 5299
  • 29 Qian W, Jin E, Bao W, Zhang Y. Angew. Chem. Int. Ed. 2005; 44: 952
  • 30 α-Keto Esters 3; General Procedure Nitromethyl aryl ketone 1 (0.5 mmol), [dibmim]+[BF4](1.5mmol), and the appropriate nucleophile (5 equiv) were dissolved in the appropriate solvent (8 mL), and the mixture was stirred and refluxed for 1 or 2 h. When the reaction was complete (TLC), hexane (40 mL) was added to precipitate ion-supported iodobenzene as a white solid that was collected by filtration and dried [yield: 0.50 g (86%)]. The filtrate was concentrated under vacuum, and the residue was purified by chromatography [silica gel, PE–EtOAc (20:1)]. Ethyl Oxo(phenyl)acetate (3a) Yellow oil; yield: 78 mg (88%); 1H NMR (400 MHz, CDCl3): δ = 1.43 (t, J = 7.2 Hz, 3 H), 4.46 (q, J = 7.2 Hz, 2 H), 7.50 (t, J = 8.0 Hz, 2 H), 7.63–7.67 (m, 1 H), 7.98–8.01 (m, 2 H). 13C NMR (100 MHz, CDCl3): δ = 14.2, 62.3, 128.7, 129.8, 132.3, 134.7, 163.6, 186.1. ESI-HRMS: m/z [M + Na]+ calcd for C10H10NaO3: 201.0522; found: 201.0250.