Synlett 2016; 27(12): 1878-1882
DOI: 10.1055/s-0035-1562101
letter
© Georg Thieme Verlag Stuttgart · New York

Iron(III)-Catalyzed Radical Cross-Coupling of Thiols with Sodium Sulfinates: A Facile Access to Thiosulfonates

Twinkle Keshari
Green Synthesis Lab, Department of Chemistry, University of Allahabad, Allahabad 211 002, India   Email: twinkle31081989@hotmail.com   Email: ritukapoorr@yahoo.in   Email: ldsyadav@hotmail.com
,
Ritu Kapoorr
Green Synthesis Lab, Department of Chemistry, University of Allahabad, Allahabad 211 002, India   Email: twinkle31081989@hotmail.com   Email: ritukapoorr@yahoo.in   Email: ldsyadav@hotmail.com
,
Lal Dhar S. Yadav*
Green Synthesis Lab, Department of Chemistry, University of Allahabad, Allahabad 211 002, India   Email: twinkle31081989@hotmail.com   Email: ritukapoorr@yahoo.in   Email: ldsyadav@hotmail.com
› Author Affiliations
Further Information

Publication History

Received: 03 December 2015

Accepted after revision: 30 March 2016

Publication Date:
09 May 2016 (online)


Abstract

A convenient and efficient synthesis of symmetrical and asymmetric thiosulfonates from thiols and sodium sulfinates is reported. The protocol involves iron(III)-catalyzed formation of sulfenyl and sulfonyl radicals in situ under aerobic conditions and their subsequent cross-coupling to afford thiosulfonates in 83–96% yield. The utilization of readily available, nontoxic, and inexpensive iron(III) as a catalyst and atmospheric oxygen as an oxidant is within the confines of green and sustainable chemistry.

 
  • References and Notes

    • 1a Giese B. Radicals in Organic Synthesis: Formation of Carbon–Carbon Bonds. Pergamon; Oxford: 1986
    • 1b Curran DP, Porter NA, Giese B. Stereochemistry of Radical Reactions: Concepts, Guidelines, and Synthetic Applications. VCH; Weinheim: 1996
    • 1c Radicals in Organic Synthesis. Renaud P, Sibi MP. Wiley-VCH; Weinheim: 2001
    • 1d Electron Transfer in Chemistry. Vol 1. Balzani V. Wiley-VCH; Weinheim: 2001
    • 1e Radicals in Synthesis I: Methods and Mechanisms. Gansäuer A. Springer; Berlin: 2006
    • 1f Radicals in Synthesis II: Complex Molecules. Gansäuer A. Springer; Berlin: 2006

      For recent reviews, see:
    • 2a Chatgilialoglu C, Crich D, Komatsu M, Ryu I. Chem. Rev. 1999; 99: 1991
    • 2b Gansäuer A, Bluhm H. Chem. Rev. 2000; 100: 2771
    • 2c Rheault TR, Sibi MP. Synthesis 2003; 803
    • 2d Sibi MP, Manyem S, Zimmerman J. Chem. Rev. 2003; 103: 3263
    • 3a Giglio BC, Schmidt VA, Alexanian EJ. J. Am. Chem. Soc. 2011; 133: 13320
    • 3b Wang H, Wang Y, Liang D, Liu L, Zhang J, Zhu Q. Angew. Chem. Int. Ed. 2011; 50: 5678
    • 3c Wang Z.-Q, Zhang W.-W, Gong L.-B, Tang R.-Y, Yang X.-H, Liu Y, Li J.-H. Angew. Chem. Int. Ed. 2011; 50: 8968
    • 3d Wei WJ, Ji X. Angew. Chem. Int. Ed. 2011; 50: 9097
    • 3e Wei W, Liu C, Yang D, Wen J, You J, Suo Y, Wang H. Chem. Commun. 2013; 49: 10239
    • 3f Deb A, Manna S, Modak A, Patra T, Maity S, Maiti D. Angew. Chem. Int. Ed. 2013; 52: 9747
    • 3g Su Y, Sun X, Wu G, Jiao N. Angew. Chem. Int. Ed. 2013; 52: 9808
    • 3h Lu Q, Zhang J, Wei F, Qi Y, Wang H, Liu Z, Lei AW. Angew. Chem. Int. Ed. 2013; 52: 7156
    • 3i Lu Q, Zhang J, Zhao G, Qi Y, Wang H, Lei AW. J. Am. Chem. Soc. 2013; 135: 11481

      For some reviews on reactions performed with the use of molecular oxygen as an oxidant, see:
    • 4a Stahl SS. Science 2005; 309: 1824
    • 4b Stahl SS. Angew. Chem. Int. Ed. 2004; 43: 3400
    • 4c Stoltz BM. Chem. Lett. 2004; 33: 362
    • 4d Schultz MJ, Sigman MS. Tetrahedron 2006; 62: 8227
    • 4e Muzart J. Chem. Asian J. 2006; 1: 508
    • 4f Sigman MS, Jensen DR. Acc. Chem. Res. 2006; 39: 221
    • 4g Beccalli EM, Broggini G, Martinelli M, Sottocornola S. Chem. Rev. 2007; 107: 5318
    • 4h Piera J, Bäckvall J.-E. Angew. Chem. Int. Ed. 2008; 47: 3506
    • 4i Punniyamurthy T, Velusamy S, Iqbal J. Chem. Rev. 2005; 105: 2329
    • 4j Shi Z, Zhang C, Tang C, Jiao N. Chem. Soc. Rev. 2012; 41: 3381
    • 4k Wendlandt AE, Suess AM, Stahl SS. Angew. Chem. Int. Ed. 2011; 50: 11062

      For selected examples, see:
    • 5a Zhang Y.-H, Yu J.-Q. J. Am. Chem. Soc. 2009; 131: 14654
    • 5b Wang A, Jiang H. J. Am. Chem. Soc. 2008; 130: 5030
    • 5c Lewis EA, Tolman WB. Chem. Rev. 2004; 104: 1047
    • 5d Mirica LM, Ottenwaelder X, Stack TD. P. Chem. Rev. 2004; 104: 1013
    • 5e Zhang C, Jiao N. J. Am. Chem. Soc. 2010; 132: 28
    • 5f Wang H, Wang Y, Peng C, Zhang J, Zhu Q. J. Am. Chem. Soc. 2010; 132: 13217
    • 5g Chiba S, Zhang L, Lee J.-Y. J. Am. Chem. Soc. 2010; 132: 7266
    • 5h Toh KK, Wang Y.-F, Ng EP. J, Chiba S. J. Am. Chem. Soc. 2011; 133: 13942
    • 5i Wang Y.-F, Chen H, Zhu X, Chiba S. J. Am. Chem. Soc. 2012; 134: 11980
    • 5j Chandra Mohan D, Rao SN, Adimurthy S. J. Org. Chem. 2013; 78: 1266
    • 5k Ohshima T, Sodeoka M, Shibasaki M. Tetrahedron Lett. 1993; 34: 8509
    • 5l Tategami S, Yamada T, Nishino H, Kurosawa K. Tetrahedron Lett. 1990; 31: 6371
    • 5m Zhang C, Xu Z, Shen T, Wu G, Zhang L, Jiao N. Org. Lett. 2012; 14: 2362
    • 5n Kim SO, Sastri CV, Seo MS, Kim J, Nam W. J. Am. Chem. Soc. 2005; 127: 4178
    • 5o Li B, Liu A.-H, He L.-N, Yang Z.-Z, Gao J, Chen K.-H. Green Chem. 2012; 14: 130
    • 5p Hasan K, Brown N, Kozak CM. Green Chem. 2011; 13: 1230
    • 6a Weidner JP, Block SS. J. Med. Chem. 1964; 7: 671
    • 6b Block SS, Weidner JP. Develop. Ind. Microbiol. Ser. 1963; 4: 213
    • 6c Block SS, Weidner JP. Mech. React. Sulfur Compd. 1968; 2: 235
  • 7 Zefirof NS, Zyk NV, Beloglazkina EK, Kutateladze AG. Sulfur Rep. 1993; 14: 223
    • 8a Palumbo G, Ferreri C, D’Ambrocio C, Caputo R. Phosphorus Sulfur Relat. Elem. 1984; 19: 235
    • 8b Parsons TF, Buckman JD, Pearson DE, Field L. J. Org. Chem. 1965; 30: 1923
    • 8c Fujiki K, Akieda S, Yasuda H, Sasaki Y. Synthesis 2001; 1035
    • 8d Fujiki K, Yoshida E. Synth. Commun. 1999; 29: 3289
    • 9a Comprehensive Organic Synthesis. Vol. 4. Trost BM, Fleming I. Pergamon; Oxford: 1991
    • 9b Davis FA. J. Org. Chem. 2006; 71: 8993
    • 10a Krief A In Comprehensive Organometallic Chemistry II. Vol. 11. Abel EW, Stone FG. A, Wilkinson G. Chap. 13 Pergamon; Oxford: 1995: 515
    • 10b Metal-Catalyzed Cross-Coupling Reactions. de Meijere A, Diederich F. Wiley-VCH; Weinheim: 2004
    • 10c Ley SV, Thomas AW. Angew. Chem. Int. Ed. 2003; 42: 5400
    • 10d Kondo T, Mitsudo T. Chem. Rev. 2000; 100: 3205
    • 10e Beletskaya IP, Ananikov VP. Chem. Rev. 2011; 111: 1596
    • 10f Partyka DV. Chem. Rev. 2011; 111: 1529
    • 11a Field L, Parsons TF. J. Org. Chem. 1965; 30: 657
    • 11b Chau MM, Kice JL. J. Am. Chem. Soc. 1976; 98: 7711
    • 11c Cai M.-T, Lv G.-S, Chen J.-X, Gao W.-X, Ding J.-C, Wu H.-Y. Chem. Lett. 2010; 39: 368
    • 11d Iranpoor N, Firouzabadi H, Pourali A.-R. Synlett 2004; 347
    • 11e Kirihara M, Naito S, Ishizuka Y, Hanai H, Noguchi T. Tetrahedron Lett. 2011; 52: 3086
    • 13a Oae S, Takata T, Kim YH. Bull. Chem. Soc. Jpn. 1982; 55: 2484
    • 13b Oae S, Takata T, Kim YH. Tetrahedron 1981; 37: 37
    • 13c Alcaraz M.-L, Atkinson S, Cornwall P, Foster AC, Gill DM, Humphries LA, Keegan PS, Kemp R, Merifield E, Nixon RA, Noble AJ, O’Beirne D, Patel ZM, Perkins J, Rowan P, Sadler P, Singleton JT, Tornos J, Watts AJ, Woodland IA. Org. Process Res. Dev. 2005; 9: 555
    • 14a Block E, O’Connor J. J. Am. Chem. Soc. 1974; 96: 3921
    • 14b Bentley MD, Douglass IB, Lacadie JA. J. Org. Chem. 1972; 37: 333
    • 15a Liang G, Chen J, Li W, Chen J, Wu H. Tetrahedron Lett. 2012; 53: 6768
    • 15b Liang G, Liu M, Chen J, Ding J, Gao W, Wu H. Chin. J. Chem. 2012; 30: 1611
  • 16 Fujiki K, Tanifuji N, Sasaki Y, Yokoyama T. Synthesis 2002; 343
  • 17 Boldyrev BG, Bilozor TK. Zh. Org. Khim. 1987; 23: 1878
    • 19a Kim YH, Takata T, Oae S. Tetrahedron Lett. 1978; 19: 2305
    • 19b Clark V, Cole ER. Phosphorus, Sulfur Silicon Relat. Elem. 1994; 90: 171
  • 20 Xia M, Chen Z.-C. Synth. Commun. 1997; 27: 1309
  • 21 Harpp DN, Ash DK, Smith RA. J. Org. Chem. 1979; 44: 4135
  • 22 Taniguchi N. Eur. J. Org. Chem. 2014; 5691
    • 23a Singh AK, Chawla R, Keshari T, Yadav VK, Yadav LD. S. Org. Biomol. Chem. 2014; 12: 8550
    • 23b Chawla R, Singh AK, Yadav LD. S. Eur. J. Org. Chem. 2014; 2032
    • 23c Yadav VK, Srivastava VP, Yadav LD. S. Tetrahedron Lett. 2015; 56: 2892
    • 23d Tripathi S, Singh SN, Yadav LD. S. Tetrahedron Lett. 2015; 56: 4211
    • 24a Iranpoor N, Firouzabadi H, Pourali A.-R. Phosphorus, Sulfur Silicon Relat. Elem. 2006; 181: 473
    • 24b Kim YH, Shinhama K, Fukushima D, Oae S. Tetrahedron Lett. 1978; 19: 1211
  • 25 Meyers CY, Chan-Yu-King R, Hua DH, Kolb VM, Matthews WS, Parady TE, Horii T, Sandrock PB, Hou Y, Xie S. J. Org. Chem. 2003; 68: 500
  • 26 Kutsyuba TS, Granchak VM, Dilung II. Theor. Exp. Chem. (Engl. Transl.) 1997; 33: 26
  • 27 Totani I, Okada H. JP H0943760, 1997 ; Chem. Abstr. 1997, 126, 270336.
  • 28 Thiosulfonates 3; General Procedure A mixture of the appropriate thiol 1 (0.5 mmol), sodium thiosulfinate 2 (1.0 mmol), and FeCl3 (20 mol%) in DMF (3 mL) was stirred at r.t. for 30–60 min under air in a round-bottomed flask. When the reaction was complete (TLC), H2O (5 mL) was added and the mixture was extracted with EtOAc (3 × 5 mL). The combined organic phases were dried (Na2SO4), filtered, and concentrated under reduced pressure. The residue was purified by column chromatography using a gradient mixture of hexane and EtOAc as eluent. S-Phenyl 4-Toluenethiosulfonate (Table 3, Entry 1) Colorless solid; yield: 126 mg (96%); mp 74–75 °C. IR (KBr): 1130, 1315 (SO2) cm–1. 1H NMR (400 MHz, CDCl3, TMS): δ = 2.40 (s, 3 H) 7.31 (t, 2 H, J = 6.8 Hz), 7.34 (t, 2 H, J = 6.8 Hz), 7.40–7.44 (m, 2 H), 7.58 (d, 2 H, J = 8.4 Hz), 7.48 (d, 1 H, J = 8.8 Hz). 13C NMR (100 MHz, CDCl3, TMS): δ = 28.3, 127.4, 127.9, 128.8, 129.3, 131.5, 133.5, 136.6, 143.0. EIMS: m/z = 264 [M+]. Anal. Calcd for C13H12O2S2: C, 59.06; H, 4.58. Found: C, 59.28; H, 4.45. S-(4-Fluorophenyl) 4-Fluorobenzenethiosulfonate (Table 3, Entry 3) Colorless crystal; yield: 132 mg (92%); mp 68–70 °C. IR (KBr): 1229, 1330 (SO2) cm–1. 1H NMR (400 MHz, CDCl3, TMS): δ = 7.10 (d, 2 H, J = 8.4 Hz), 7.16 (t, 2 H, J = 8.4 Hz), 7.35 (dd, 2 H, J = 5.2 Hz, J = 9.0 Hz), 7.63 (dd, 2 H, J = 4.8 Hz, J = 9.6 Hz). 13C NMR (100 MHz, CDCl3, TMS): δ = 116.4, 117.0, 123.2, 123.7, 130.1, 138.7, 163.9, 166.1. EIMS: m/z = 286 [M+]. Anal. Calcd for C12H8F2O2S2: C, 50.34; H, 2.82. Found: C, 50.54; H, 2.76. S-(3-Nitrophenyl) 4-Toluenethiosulfonate (Table 3, Entry 5) Colorless crystal; yield: 139 mg (90%); mp 97–99 °C. IR (KBr): 1140, 1331 (SO2) cm–1. 1H NMR (400 MHz, CDCl3, TMS): δ = 2.39 (s, 3 H), 7.24–7.28 (m, 2 H), 7.40–7.49 (m, 2 H), 7.64 (t, J = 8.0 Hz, 1 H), 7.83–7.86 (m, 1 H), 8.02 (s, 1 H), 8.32–8.39 (m, 1 H). 13C NMR (100 MHz, CDCl3, TMS): δ = 21.2, 125.6, 127.4, 129.8, 130.4, 130.5, 131.0, 139.5, 142.0, 145.7, 148.3. EIMS: m/z = 309 [M+]. Anal. Calcd for C13H11NO4S2: C, 50.47; H, 3.38; N, 4.53. Found: C, 50.26; H, 3.49; N, 4.80. S-(4-Chlorophenyl) 4-Chlorobenzenethiosulfonate (Table 3, Entry 7) Colorless crystal; yield: 149 mg (94%); mp 134–136 °C. IR (KBr): 1140, 1330 (SO2) cm–1. 1H NMR (400 MHz, CDCl3, TMS): δ = 7.35 (d, 2 H, J = 8.4 Hz), 7.39 (d, 2 H, J = 8.8 Hz), 7.46 (d, 2 H, J = 9.2 Hz), 7.52 (d, 2 H, J = 8.8 Hz). 13C NMR (100 MHz, CDCl3, TMS): δ = 128.8, 129.3, 130.0, 130.4, 137.7, 138.5, 140.5, 141.2. EIMS: m/z = 318 [M+], 320 [M + 2]+, 322 [M + 4]+. Anal. Calcd for C12H8Cl2O2S2: C, 45.15; H, 2.53. Found: C, 45.00; H, 2.75.