Klinische Neurophysiologie 2015; 46(01): 28-38
DOI: 10.1055/s-0034-1398610
Originalia
© Georg Thieme Verlag KG Stuttgart · New York

Zur Psychophysiologie exekutiver Funktionen

Towards a Psychophysiology of Executive Functions
B. Kopp
1   Klinik für Neurologie, Medizinische Hochschule Hannover
,
C. Seer
1   Klinik für Neurologie, Medizinische Hochschule Hannover
,
F. Lange
1   Klinik für Neurologie, Medizinische Hochschule Hannover
› Author Affiliations
Further Information

Publication History

Publication Date:
09 February 2015 (online)

Zusammenfassung

Dieser Artikel stellt einen Versuch dar, eine Brücke zwischen klinisch manifesten Erscheinungen exekutiver Dysfunktionen, welche infolge erworbener Hirnschädigungen zu beobachten sind, und grundlagenwissenschaftlichen Studien zur Kognitiven Psychophysiologie von Exekutivfunktionen zu schlagen. Einleitend wird kurz die klinische Phänomenologie dysexekutiver Syndrome skizziert. Danach erfolgt eine Aufarbeitung kognitiver Aspekte von Exekutivfunktionen, die in eine hierarchische Taxonomie der exekutiven Kontrolle mündet. Im Anschluss daran wird eine Einführung in die Kognitive Psychophysiologie, ihre Errungenschaften und ihre (derzeitigen) Limitationen gegeben. Abschließend werden in paradigmatischer Weise am Beispiel von 2 Studien aus unserem Labor Möglichkeiten aufgezeigt, wie sich das Studium exekutiver Funktionen mit der Erhebung psychophysiologischer Messgrößen verbinden lässt.

Abstract

This review article attempts to bridge clinically manifest signs of executive dysfunctions and cognitive psychophysiological studies on executive functioning. First, the reader will be introduced to patterns of executive deficits that are commonly subsumed under the umbrella term of the dysexecutive syndrome. Cognitive aspects of executive functioning will then be clarified resulting in a hierarchical taxonomy of executive control. Subsequently, we provide an overview of the field of cognitive psychophysiology, its merits and its limitations. 2 exemplary studies from our laboratory are finally used to illustrate the possibilities associated with the combined study of executive functions and psychophysiological measures.

 
  • Literatur

  • 1 Luria AR, Pribram KH, Homskaya ED. An experimental analysis of the behavior of disturbances produced by a left frontal arachnoidal endothelioma (meningeoma). Neuropsychologia 1964; 2: 257-280
  • 2 Stuss DT, Benson DF. Neuropsychological studies of the frontal lobes. Psychol Bull 1984; 95: 3-28
  • 3 Carpenter PA, Just MA, Reichle ED. Working memory and executive function: Evidence from neuroimaging. Curr Opin Neurobiol 2000; 10: 195-199
  • 4 Lezak MD. Neuropsychological Assessment. 3rd edn. New York: Oxford University Press; 1995
  • 5 Diamond A. Executive functions. Annu Rev Psychol 2013; 64: 135-168
  • 6 Jurado MB, Rosselli M. The elusive nature of executive functions: A review of our current understanding. Neuropsychol Rev 2007; 17: 213-233
  • 7 Müller SV, Hildebrand H, Münte TF. Kognitive Therapie bei Störungen der Exekutivfunktionen. Göttingen: Hogrefe; 2004
  • 8 Kopp B, Tabeling S, Moschner C et al. Kognitive Hirnleistungen des präfrontalen Kortex. Nervenarzt 2008; 79: 143-152
  • 9 von Cramon DY, Schubotz RI.. Exekutivfunktionen und ihre Störungen. In: Wallesch CW. Hrsg Neurologie, Diagnostik und Therapie in Klinik und Praxis. München: Urban & Fischer; 2005: 189-198
  • 10 Schneider W, Shiffrin RM. Controlled and automatic human information processing: I. Detection, search, and attention. Psychol Rev 1977; 84: 1-66
  • 11 Shiffrin RM, Schneider W. Controlled and automatic human information processing: II. Perceptual learning, automatic attending and a general theory. Psychol Rev 1977; 84: 127-190
  • 12 Descartes R. De homine figuris et latinatate donatus a Florentio Schuyl. Leyden: P Leffen & F Moyardum; 1662
  • 13 Glimcher PW. Decisions, uncertainty, and the brain: The science of neuroeconomics. Cambridge: MIT Press; 2004
  • 14 Nigg JT. On inhibition/disinhibition in developmental psychopathology: Views from cognitive and personality psychology and a working inhibition taxonomy. Psychol Bull 2000; 126: 220-246
  • 15 Eriksen BA, Eriksen CW. Effects of noise letters upon the identification of a target letter in a nonsearch task. Percept Psychophys 1974; 16: 143-149
  • 16 Meyer DE, Kieras DE. A computational theory of executive cognitive processes and multiple-task performance: Part I. Basic mechanisms. Psychol Rev 1997; 104: 3-65
  • 17 Grange JA, Houghton G. eds. Task switching and cognitive control. New York: Oxford University Press; 2014
  • 18 Kiesel A, Steinhauser M, Wendt M et al. Control and interference in task switching: A review. Psychol Bull 2010; 136: 849-874
  • 19 Meiran N. Reconfiguration of processing mode prior to task performance. J Exp Psychol Learn Mem Cogn 1996; 22: 1423-1442
  • 20 Meiran N. Task switching: Mechanisms underlying rigid vs. flexible self control. In: Hassin RR, Ochsner KN, Trope Y. eds. Self control in society, mind, and brain. New York: Oxford University Press; 2010: 202-220
  • 21 Monsell S. Task switching. Trends Cogn Sci 2003; 7: 134-140
  • 22 Schneider DW, Logan GD. Task switching versus cue switching: Using transition cuing to disentangle sequential effects in task-switching performance. J Exp Psychol Learn Mem Cogn 2007; 33: 370-378
  • 23 Forstmann BU, Brass M, Koch I et al. Internally generated and directly cued task sets: An investigation with fMRI. Neuropsychologia 2005; 43: 943-952
  • 24 West R, Langley MM, Bailey K. Signaling a switch: Neural correlates of task switching guided by task cues and transition cues. Psychophysiology 2011; 48: 612-623
  • 25 Heaton RK, Chelune GJ, Talley JL et al. Wisconsin card sort test manual: Revised and expanded. Odessa: Psychological Assessment Resources; 1993
  • 26 Berg EA. A simple objective technique for measuring flexibility in thinking. J Gen Psychol 1948; 39: 15-22
  • 27 Grant DA, Berg E. A behavioral analysis of degree of reinforcement and ease of shifting to new responses in a Weigl-type card-sorting problem. J Exp Psychol 1948; 38: 404-411
  • 28 Milner B. Effects of different brain lesions on card sorting: The role of the frontal lobes. Arch Neurol 1963; 9: 90-100
  • 29 Demakis GJ. A meta-analytic review of the sensitivity of the Wisconsin Card Sorting Test to frontal and lateralized frontal brain damage. Neuropsychology 2003; 17: 255-264
  • 30 Strauss E, Sherman EM, Spreen O. A compendium of neuropsychological tests: Administration, norms, and commentary. New York: Oxford University Press; 2006
  • 31 Royall D, Lauterbach E, Cummings J et al. Executive control function: A review of its promise and challenges for clinical research. A report from the committee on research of the American Neuropsychiatric Association. J Neuropsychiatry Clin Neurosci 2002; 14: 377-406
  • 32 Kopp B, Tabeling S, Moschner C et al. Fractionating the neural mechanisms of cognitive control. J Cogn Neurosci 2006; 18: 949-965
  • 33 Nelson HE. A modified card sorting test sensitive to frontal lobe defects. Cortex 1976; 12: 313-324
  • 34 Schretlen DJ. Modified Wisconsin card sorting test (M-WCST). Lutz: Psychological Assessment Resources; 2010
  • 35 Robbins TW. Shifting and stopping: Fronto-striatal substrates, neurochemical modulation and clinical implications. Philos Trans R Soc Lond B Biol Sci 2007; 362: 917-932
  • 36 Shallice T, Stuss DT, Picton TW et al. Mapping task switching in frontal cortex through neuropsychological group studies. Front Neurosci 2008; 2: 79-85
  • 37 Aron AR, Robbins TW, Poldrack RA. Inhibition and the right inferior frontal cortex. Trends Cogn Sci 2004; 8: 170-177
  • 38 Rogers RD, Monsell S. Costs of a predictable switch between simple cognitive tasks. J Exp Psychol Gen 1995; 124: 207-231
  • 39 Shallice T, Stuss DT, Picton TW et al. Multiple effects of prefrontal lesions on task-switching. Front Hum Neurosci 2007; 1: 2
  • 40 Badre D. Cognitive control, hierarchy, and the rostro–caudal organization of the frontal lobes. Trends Cogn Sci 2008; 12: 193-200
  • 41 Koechlin E, Ody C, Kouneiher F. The architecture of cognitive control in the human prefrontal cortex. Science 2003; 302: 1181-1185
  • 42 Koechlin E, Summerfield C. An information theoretical approach to prefrontal executive function. Trends Cogn Sci 2007; 11: 229-235
  • 43 Fuster JM. The prefrontal cortex: An update. Time is of the essence. Neuron 2001; 30: 319-333
  • 44 Suddendorf T, Corballis MC. Mental time travel and the evolution of the human mind. Genet Soc Gen Psychol Monogr 1997; 123: 133-167
  • 45 Schacter DL, Addis DR, Buckner RL. Remembering the past to imagine the future: The prospective brain. Nat Rev Neurosci 2007; 8: 657-661
  • 46 Weiler JA, Daum I. Mentales Zeitreisen: Neurokognitive Grundlagen des Zukunftsdenkens. Fortschr Neurol Psychiatr 2008; 76: 539-548
  • 47 Popper K. All life is problem solving. London and New York: Taylor & Francis. : ; 1994
  • 48 Fuster JM. Upper processing stages of the perception–action cycle. Trends Cogn Sci 2004; 8: 143-145
  • 49 Kopp B. A simple hypothesis of executive function. Front Hum Neurosci 2012; 6: 159
  • 50 Luck SJ. An introduction to the event-related potential technique. Cambridge: MIT Press; 2014
  • 51 Friederici AD. Event-related brain potential studies in language. Curr Neurol Neurosci Rep 2004; 4: 466-470
  • 52 Hillyard SA, Anllo-Vento L. Event-related brain potentials in the study of visual selective attention. Proc Natl Acad Sci USA 1998; 95: 781-787
  • 53 Kutas M, Federmeier KD. Thirty years and counting: Finding meaning in the N400 component of the event-related brain potential (ERP). Annu Rev Psychol 2011; 62: 621-647
  • 54 Polich J. Updating P300: An integrative theory of P3a and P3b. Clin Neurophysiol 2007; 118: 2128-2148
  • 55 Kolossa A, Fingscheidt T, Wessel K et al. A model-based approach to trial-by-trial P300 amplitude fluctuations. Front Hum Neurosci 2012; 6: 359
  • 56 Näätänen R, Paavilainen P, Rinne T et al. The mismatch negativity (MMN) in basic research of central auditory processing: A review. Clin Neurophysiol 2007; 118: 2544-2590
  • 57 Friedman D, Cycowicz YM, Gaeta H. The novelty P3: An event-related brain potential (ERP) sign of the brain’s evaluation of novelty. Neurosci Biobehav Rev 2001; 25: 355-373
  • 58 Kopp B, Lange F. Electrophysiological indicators of surprise and entropy in dynamic task-switching environments. Front Hum Neurosci 2013; 7: 300
  • 59 Kopp B, Rist F, Mattler U. N200 in the flanker task as a neurobehavioral tool for investigating executive control. Psychophysiology 1996; 33: 282-294
  • 60 Folstein JR, Van Petten C. Influence of cognitive control and mismatch on the N2 component of the ERP: a review. Psychophysiology 2008; 45: 152-170
  • 61 Falkenstein M, Hohnsbein J, Hoormann J et al. Effects of crossmodal divided attention on late ERP components: II. Error processing in choice reaction tasks. Electroencephalogr Clin Neurophysiol 1991; 78: 447-455
  • 62 Gehring WJ, Goss B, Coles MG et al. A neural system for error detection and compensation. Psychol Sci 1993; 4: 385-390
  • 63 Kopp B, Rist F. An event-related brain potential substrate of disturbed response monitoring in paranoid schizophrenic patients. J Abnorm Psychol 1999; 108: 337-346
  • 64 Ullsperger M, Danielmeier C, Jocham G. Neurophysiology of performance monitoring and adaptive behavior. Physiol Rev 2014; 94: 35-79
  • 65 Ullsperger M, Fischer AG, Nigbur R et al. Neural mechanisms and temporal dynamics of performance monitoring. Trends Cogn Sci 2014; 18: 259-267
  • 66 Knight RT. Decreased response to novel stimuli after prefrontal lesions in man. Electroencephalogr Clin Neurophysiol 1984; 59: 9-20
  • 67 Soltani M, Knight RT. Neural origins of the P300. Crit Rev Neurobiol 2000; 14: 199-224
  • 68 Stemmer B, Segalowitz SJ, Witzke W et al. Error detection in patients with lesions to the medial prefrontal cortex: An ERP study. Neuropsychologia 2004; 42: 118-130
  • 69 Ullsperger M, von Cramon DY, Müller NG. Interactions of focal cortical lesions with error processing: Evidence from event-related brain potentials. Neuropsychology 2002; 16: 548-561
  • 70 Näätänen R. Mismatch negativity: Clinical research and possible applications. Int J Psychophysiol 2003; 48: 179-188
  • 71 Polich J. P300 clinical utility and control of variability. J Clin Neurophysiol 1998; 15: 14-33
  • 72 Verleger R. Event-related EEG potential research in neurological patients. In: Zani A, Proverbio AM. eds. The cognitive electrophysiology of mind and brain. San Diego, London: Academic Press; 2002: 309-341
  • 73 Polich J, Herbst K. P300 as a clinical assay: Rationale, evaluation, and findings. Int J Psychophysiol 2000; 38: 3-19
  • 74 Ilvonen T, Kujala T, Kozou H et al. The processing of speech and non-speech sounds in aphasic patients as reflected by the mismatch negativity (MMN). Neurosci Lett 2004; 366: 235-240
  • 75 Umbricht D, Krljes S. Mismatch negativity in schizophrenia: A meta-analysis. Schizophr Res 2005; 76: 1-23
  • 76 Tsuchiya H, Yamaguchi S, Kobayashi S. Impaired novelty detection and frontal lobe dysfunction in Parkinson’s disease. Neuropsychologia 2000; 38: 645-654
  • 77 Rustamov N, Rodriguez-Raecke R, Timm L et al. Absence of congruency sequence effects reveals neurocognitive inflexibility in Parkinson’s disease. Neuropsychologia 2013; 51: 2976-2987
  • 78 Rustamov N, Rodriguez-Raecke R, Timm L et al. Attention shifting in Parkinson’s disease: An analysis of behavioral and cortical responses. Neuropsychology 2014; 28: 929-944
  • 79 Falkenstein M, Hielscher H, Dziobek I et al. Action monitoring, error detection, and the basal ganglia: An ERP study. Neuroreport 2001; 12: 157-161
  • 80 Holroyd CB, Praamstra P, Plat E et al. Spared error-related potentials in mild to moderate Parkinson’s disease. Neuropsychologia 2002; 40: 2116-2124
  • 81 Ruchsow M, Grön G, Reuter K et al. Error-related brain activity in patients with obsessive-compulsive disorder and in healthy controls. J Psychophysiol 2005; 19: 298-304
  • 82 Luck SJ, Woodman GF, Vogel EK. Event-related potential studies of attention. Trends Cogn Sci 2000; 4: 432-440
  • 83 Ullsperger M, von Cramon DY. Ereigniskorrelierte Potenziale in der kognitiven Neurologie. Akt Neurol 2004; 31: 396-403
  • 84 Chiappa KH. ed. Evoked potentials in clinical medicine. Philadelphia: Lippincott-Raven Publishers; 1997
  • 85 Danielmeier C, Wessel JR, Steinhauser M et al. Modulation of the error-related negativity by response conflict. Psychophysiology 2009; 46: 1288-1298
  • 86 Gehring WJ, Gratton G, Coles MG et al. Probability effects on stimulus evaluation and response processes. J Exp Psychol Hum Percept Perform 1992; 18: 198-216
  • 87 Kopp B, Mattler U, Goertz R et al. N2, P3 and the lateralized readiness potential in a nogo task involving selective response priming. Electroencephalogr Clin Neurophysiol 1996; 99: 19-27
  • 88 Yeung N, Botvinick MM, Cohen JD. The neural basis of error detection: conflict monitoring and the error-related negativity. Psychol Rev 2004; 111: 931-959
  • 89 Gratton G, Coles MG, Donchin E. Optimizing the use of information: Strategic control of activation of responses. J Exp Psychol Gen 1992; 121: 480-506
  • 90 Egner T. Congruency sequence effects and cognitive control. Cogn Affect Behav Neurosci 2007; 7: 380-390
  • 91 Clayson PE, Larson MJ. Effects of repetition priming on electrophysiological and behavioral indices of conflict adaptation and cognitive control. Psychophysiology 2011; 48: 1621-1630
  • 92 Clayson PE, Larson MJ. Conflict adaptation and sequential trial effects: Support for the conflict monitoring theory. Neuropsychologia 2011; 49: 1953-1961
  • 93 Clayson PE, Larson MJ. Cognitive performance and electrophysiological indices of cognitive control: A validation study of conflict adaptation. Psychophysiology 2012; 49: 627-637
  • 94 Forster SE, Carter CS, Cohen JD et al. Parametric manipulation of the conflict signal and control-state adaptation. J Cogn Neurosci 2011; 23: 923-935
  • 95 Freitas AL, Banai R, Clark SL. When cognitive control is calibrated: Event-related potential correlates of adapting to information-processing conflict despite erroneous response preparation. Psychophysiology 2009; 46: 1226-1233
  • 96 Larson MJ, Clayson PE, Baldwin SA. Performance monitoring following conflict: Internal adjustments in cognitive control?. Neuropsychologia 2012; 50: 426-433
  • 97 Botvinick MM, Braver TS, Barch DM et al. Conflict monitoring and cognitive control. Psychol Rev 2001; 108: 624-652
  • 98 Barceló F, Periáñez JA, Knight RT. Think differently: A brain orienting response to task novelty. Neuroreport 2002; 13: 1887-1892
  • 99 Cunillera T, Fuentemilla L, Periañez J et al. Brain oscillatory activity associated with task switching and feedback processing. Cogn Affect Behav Neurosci 2012; 12: 16-33
  • 100 Kopp B, Lange F, Howe J et al. Age-related changes in neural recruitment for cognitive control. Brain Cogn 2014; 85: 209-219
  • 101 Barceló F, Periáñez JA, Nyhus E. An information theoretical approach to task-switching: evidence from cognitive brain potentials in humans. Front Hum Neurosci 2007; 1: 13
  • 102 Bach DR, Dolan RJ. Knowing how much you don’t know: A neural organization of uncertainty estimates. Nat Rev Neurosci 2012; 13: 572-586
  • 103 Fan J. An information theory account of cognitive control. Front Hum Neurosci 2014; 8: 680
  • 104 Fleming SM, Huijgen J, Dolan RJ. Prefrontal contributions to metacognition in perceptual decision making. J Neurosci 2012; 32: 6117-6125
  • 105 Ridderinkhof KR, Ullsperger M, Crone EA et al. The role of the medial frontal cortex in cognitive control. Science 2004; 306: 443-447
  • 106 Kolossa A, Kopp B, Fingscheidt T. A computational analysis of the neural bases of Bayesian inference. Neuroimage 2015; 106: 222-237
  • 107 San Martín R. Event-related potential studies of outcome processing and feedback-guided learning. Front Hum Neurosci 2012; 6: 304