Neuroradiologie Scan 2015; 05(03): 239-265
DOI: 10.1055/s-0034-1392265
Fortbildung
© Georg Thieme Verlag KG Stuttgart · New York

Multidetektor-CT bei Erwachsenen mit stumpfem Trauma der Halswirbelsäule[1]

Multidetector CT of blunt cervical spine trauma in adults
David Dreizin
,
Michael Letzing
,
Clint W. Sliker
,
Falgun H. Chokshi
,
Uttam Bodanapally
,
Stuart E. Mirvis
,
Robert M. Quencer
,
Felipe Munera
Further Information

Publication History

Publication Date:
10 July 2015 (online)

Zusammenfassung

Die Bildgebung der Halswirbelsäule wurde seit der Einführung der 64-Zeilen-CT-Scanner im Jahr 2004 durch eine Reihe von Neuerungen weiterentwickelt. Immer umfangreicheres Evidenzmaterial spricht für den Einsatz der Multidetektor-CT als eigenständigen Screening-Test zum Ausschluss zervikaler Verletzungen bei polytraumatisierten Patienten mit Bewusstseinstrübung. Zunehmende Akzeptanz gewinnt bei den Wirbelsäulenchirurgen eine neue Grading-Skala, die auf CT- und MRT-Befunden und auf dem SLIC-Scoring-System für Verletzungen der Halswirbelsäule (Subaxial Injury Classification and Scoring System) basiert. Zurzeit werden die gebräuchlichen radiografischen Parameter für die Evaluation kraniozervikaler Distraktionsverletzungen unter Verwendung der Multidetektor-CT neu bewertet. Bislang werden die meisten Patienten mit stumpfem Trauma nicht operativ behandelt, doch haben neue Erkenntnisse bezüglich der Stabilität der Wirbelsäule sowie die Entwicklung neuer Operationstechniken und neuer Hardware dazu geführt, dass der aktuelle Trend bei den Behandlungsstrategien zunehmend in Richtung chirurgischer Interventionen geht. Für die Radiologen ist es daher unerlässlich zu bestimmen, anhand welcher Befunde sich Verletzungen, die wegen Instabilität des Bandapparats oder hoher Wahrscheinlichkeit von Nonfusion einer operativen Stabilisierung bedürfen, von jenen unterscheiden lassen, die klassischerweise stabil sind und allein mittels Halskragen oder Halo-Weste behandelt werden können. Dieser Artikel gibt einen Überblick über das Spektrum der Halswirbelsäulenverletzungen, vom kraniozervikalen Übergang bis zur subaxialen Wirbelsäule, und stellt die gebräuchlichsten Grading-Systeme für die einzelnen Verletzungsarten vor.

Abstract

A number of new developments in cervical spine imaging have transpired since the introduction of 64-section computed tomographic (CT) scanners in 2004. An increasing body of evidence favors the use of multidetector CT as a stand-alone screening test for excluding cervical injuries in polytrauma patients with obtundation. A new grading scale that is based on CT and magnetic resonance (MR) imaging findings, the cervical spine Subaxial Injury Classification and Scoring (SLIC) system, is gaining acceptance among spine surgeons. Radiographic measurements described for the evaluation of craniocervical distraction injuries are now being reevaluated with the use of multidetector CT. Although most patients with blunt trauma are now treated nonsurgically, evolution in the understanding of spinal stability, as well as the development of new surgical techniques and hardware, has driven management strategies that are increasingly favorable toward surgical intervention. It is therefore essential that radiologists recognize findings that distinguish injuries with ligamentous instability or a high likelihood of nonfusion that require surgical stabilization from those that are classically stable and can be treated with a collar or halo vest alone. The purpose of this article is to review the spectrum of cervical spine injuries, from the craniocervical junction through the subaxial spine, and present the most widely used grading systems for each injury type.

1 © 2015 The Radiological Society of North America. All rights reserved. Originally puplished in English in RadioGraphics 2014; 34: 1842 – 1865. Online published in 10.1148 /rg.347130094. Translated and reprinted with permission of RSNA. RSNA is not responsible for any inaccuracy or error arising from the translation from English to German.


 
  • Literatur

  • 1 Berkowitz M. Assessing the socioeconomic impact of improved treatment of head and spinal cord injuries. J Emerg Med 1993; 11: 63-67
  • 2 Bracken MB, Freeman Jr DH, Hellenbrand K. Incidence of acute traumatic hospitalized spinal cord injury in the United States, 1970–1977. Am J Epidemiol 1981; 113: 615-622
  • 3 Vaccaro AR, Hulbert RJ, Patel AA et al. The subaxial cervical spine injury classification system: a novel approach to recognize the importance of morphology, neurology, and integrity of the disco-ligamentous complex. Spine (Phila Pa 1976) 2007; 32: 2365-2374
  • 4 Vaccaro AR, An HS, Lin S et al. Noncontiguous injuries of the spine. J Spinal Disord 1992; 5: 320-329
  • 5 Kwon BK, Vaccaro AR, Grauer JN et al. Subaxial cervical spine trauma. J Am Acad Orthop Surg 2006; 14: 78-89
  • 6 American College of Surgeons. Advanced Trauma Life Support (ATLS®) student course manual. 9th. ed. Chicago, Ill: American College of Surgeons; 2012
  • 7 Stiell IG, Wells GA, Vandemheen KL et al. The Canadian C-spine rule for radiography in alert and stable trauma patients. JAMA 2001; 286: 1841-1848
  • 8 Hoffman JR, Mower WR, Wolfson AB et al. Validity of a set of clinical criteria to rule out injury to the cervical spine in patients with blunt trauma. National Emergency X-Radiography Utilization Study Group. N Engl J Med 2000; 343: 94-99
  • 9 American College of Radiology. ACR Appropriateness Criteria®: suspected spine trauma. Reston, Va: American College of Radiology; 2012
  • 10 Rose MK, Rosal LM, Gonzalez RP et al. Clinical clearance of the cervical spine in patients with distracting injuries: It is time to dispel the myth. J Trauma Acute Care Surg 2012; 73: 498-502
  • 11 Blackmore CC, Emerson SS, Mann FA et al. Cervical spine imaging in patients with trauma: determination of fracture risk to optimize use. Radiology 1999; 211: 759-765
  • 12 Morris CG, McCoy É. Clearing the cervical spine in unconscious polytrauma victims, balancing risks and effective screening. Anaesthesia 2004; 59: 464-482
  • 13 Reid DC, Henderson R, Saboe L et al. Etiology and clinical course of missed spine fractures. J Trauma 1987; 27: 980-986
  • 14 Stelfox HT, Velmahos GC, Gettings E et al. Computed tomography for early and safe discontinuation of cervical spine immobilization in obtunded multiply injured patients. J Trauma 2007; 63: 630-636
  • 15 Nuñez Jr DB, Ahmad AA, Coin CG et al. Clearing the cervical spine in multiple trauma victims: a time-effective protocol using helical computed tomography. Emerg Radiol 1994; 1: 273-278
  • 16 Theocharopoulos NC, Chatzakis G, Damilakis J. Is radiography justified for the evaluation of patients presenting with cervical spine trauma?. Med Phys 2009; 36: 4461-4470
  • 17 Kirschner J, Seupaul RA. Does computed tomography rule out clinically significant cervical spine injuries in obtunded or intubated blunt trauma patients? [corrected]. Ann Emerg Med 2012; 60: 737-738 [published correction: Ann Emerg Med 2013; 61: 261]
  • 18 Muchow RD, Resnick DK, Abdel MP et al. Magnetic resonance imaging (MRI) in the clearance of the cervical spine in blunt trauma: a meta-analysis. J Trauma 2008; 64: 179-189
  • 19 Panczykowski DM, Tomycz ND, Okonkwo DO. Comparative effectiveness of using computed tomography alone to exclude cervical spine injuries in obtunded or intubated patients: meta-analysis of 14 327 patients with blunt trauma. J Neurosurg 2011; 115: 541-549
  • 20 British Trauma Society. Guidelines for the initial management and assessment of spinal injury: British Trauma Society, 2002. Injury 2003; 34: 405-425
  • 21 Hogan GJ, Mirvis SE, Shanmuganathan K et al. Exclusion of unstable cervical spine injury in obtunded patients with blunt trauma: Is MR imaging needed when multi-detector row CT findings are normal?. Radiology 2005; 237: 106-113
  • 22 Como JJ, Thompson MA, Anderson JS et al. Is magnetic resonance imaging essential in clearing the cervical spine in obtunded patients with blunt trauma?. J Trauma 2007; 63: 544-549
  • 23 Tomycz ND, Chew BG, Chang YF et al. MRI is unnecessary to clear the cervical spine in obtunded/comatose trauma patients: the four-year experience of a level I trauma center. J Trauma 2008; 64: 1258-1263
  • 24 Stassen NA, Williams VA, Gestring ML et al. Magnetic resonance imaging in combination with helical computed tomography provides a safe and efficient method of cervical spine clearance in the obtunded trauma patient. J Trauma 2006; 60: 171-177
  • 25 Sarani B, Waring S, Sonnad S et al. Magnetic resonance imaging is a useful adjunct in the evaluation of the cervical spine of injured patients. J Trauma 2007; 63: 637-640
  • 26 Sliker CW. Blunt cerebrovascular injuries: imaging with multidetector CT angiography. RadioGraphics 2008; 28: 1689-1708 (discussion: 1709 – 1710)
  • 27 Burlew CC, Biffl WL, Moore EE et al. Blunt cerebrovascular injuries: redefining screening criteria in the era of noninvasive diagnosis. J Trauma Acute Care Surg 2012; 72: 330-335 (discussion: 336 – 337)
  • 28 Schneidereit NP, Simons R, Nicolaou S et al. Utility of screening for blunt vascular neck injuries with computed tomographic angiography. J Trauma 2006; 60: 209-215 (discussion: 215 – 216)
  • 29 Cothren CC, Moore EE, Ray Jr CE et al. Screening for blunt cerebrovascular injuries is cost-effective. Am J Surg 2005; 190: 845-849
  • 30 DiCocco JM, Emmett KP, Fabian TC et al. Blunt cerebrovascular injury screening with 32-channel multidetector computed tomography: More slices still don’t cut it. Ann Surg 2011; 253: 444-450
  • 31 Goodwin RB, Beery 2nd PR, Dorbish RJ et al. Computed tomographic angiography versus conventional angiography for the diagnosis of blunt cerebrovascular injury in trauma patients. J Trauma 2009; 67: 1046-1050
  • 32 Anderson SW, Soto JA, Lucey BC et al. Blunt trauma: feasibility and clinical utility of pelvic CT angiography performed with 64-detector row CT. Radiology 2008; 246: 410-419
  • 33 Sliker CW, Shanmuganathan K, Mirvis SE. Diagnosis of blunt cerebrovascular injuries with 16-MDCT: accuracy of whole-body MDCT compared with neck MDCT angiography. AJR Am J Roentgenol 2008; 190: 790-799
  • 34 Junewick JJ. Pediatric craniocervical junction injuries. AJR Am J Roentgenol 2011; 196: 1003-1010
  • 35 Chang W, Alexander MT, Mirvis SE. Diagnostic determinants of craniocervical distraction injury in adults. AJR Am J Roentgenol 2009; 192: 52-58
  • 36 Deliganis AV, Baxter AB, Hanson JA et al. Radiologic spectrum of craniocervical distraction injuries. RadioGraphics 2000; 20: S237-S250 [published correction: RadioGraphics 2001; 21: 520]
  • 37 Rojas CA, Bertozzi JC, Martinez CR et al. Reassessment of the craniocervical junction: normal values on CT. AJNR Am J Neuroradiol 2007; 28: 1819-1823
  • 38 Horn EM, Feiz-Erfan I, Lekovic GP et al. Survivors of occipito­atlantal dislocation injuries: imaging and clinical correlates. J Neurosurg Spine 2007; 6: 113-120
  • 39 Papadopoulos SM, Dickman CA, Sonntag VK et al. Traumatic atlantooccipital dislocation with survival. Neurosurgery 1991; 28: 574-579
  • 40 Goradia D, Blackmore CC, Talner LB et al. Predicting radiology resident errors in diagnosis of cervical spine fractures. Acad Radiol 2005; 12: 888-893
  • 41 Chaput CD, Walgama J, Torres E et al. Defining and detecting missed ligamentous injuries of the occipitocervical complex. Spine (Phila Pa 1976) 2011; 36: 709-714
  • 42 Powers B, Miller MD, Kramer RS et al. Traumatic anterior atlanto-occipital dislocation. Neurosurgery 1979; 4: 12-17
  • 43 Dziurzynski K, Anderson PA, Bean DB et al. A blinded assessment of radiographic criteria for atlanto-occipital dislocation. Spine (Phila Pa 1976) 2005; 30: 1427-1432
  • 44 Harris Jr JH, Carson GC, Wagner LK et al. Radiologic diagnosis of traumatic occipitovertebral dissociation. II. Comparison of three methods of detecting occipitovertebral relationships on lateral radiographs of supine subjects. AJR Am J Roentgenol 1994; 162: 887-892
  • 45 Hinck VC, Hopkins CE. Measurement of the atlanto-dental interval in the adult. Am J Roentgenol Radium Ther Nucl Med 1960; 84: 945-951
  • 46 Gonzalez LF, Fiorella D, Crawford NR et al. Vertical atlantoaxial distraction injuries: radiological criteria and clinical implications. J Neurosurg Spine 2004; 1: 273-280
  • 47 Radcliff KE, Ben-Galim P, Dreiangel N et al. Comprehensive computed tomography assessment of the upper cervical anatomy: What is normal?. Spine J 2010; 10: 219-229
  • 48 el-Khoury GY, Kathol MH, Daniel WW. Imaging of acute injuries of the cervical spine: value of plain radiography, CT, and MR imaging. AJR Am J Roentgenol 1995; 164: 43-50
  • 49 Radcliff K, Kepler C, Reitman C et al. CT and MRI-based diagnosis of craniocervical dislocations: the role of the occipitoatlantal ligament. Clin Orthop Relat Res 2012; 470: 1602-1613
  • 50 Leone A, Cerase A, Colosimo C et al. Occipital condylar fractures: a review. Radiology 2000; 216: 635-644
  • 51 Hanson JA, Deliganis AV, Baxter AB et al. Radiologic and clinical spectrum of occipital condyle fractures: retrospective review of 107 consecutive fractures in 95 patients. AJR Am J Roentgenol 2002; 178: 1261-1268
  • 52 Malham GM, Ackland HM, Jones R et al. Occipital condyle fractures: incidence and clinical follow-up at a level 1 trauma centre. Emerg Radiol 2009; 16: 291-297
  • 53 Anderson PA, Montesano PX. Morphology and treatment of occipital condyle fractures. Spine (Phila Pa 1976) 1988; 13: 731-736
  • 54 Gehweiler Jr JA, Duff DE, Martinez S et al. Fractures of the atlas vertebra. Skeletal Radiol 1976; 1: 97-102
  • 55 Anderson LD, D’Alonzo RT. Fractures of the odontoid process of the axis. J Bone Joint Surg Am 1974; 56: 1663-1674
  • 56 Effendi B, Roy D, Cornish B et al. Fractures of the ring of the axis: a classification based on the analysis of 131 cases. J Bone Joint Surg Br 1981; 63-B 319-327
  • 57 Levine AM, Edwards CC. The management of traumatic spondylolisthesis of the axis. J Bone Joint Surg Am 1985; 67: 217-226
  • 58 Fielding JW, Hawkins RJ. Atlanto-axial rotatory fixation (fixed rotatory subluxation of the atlanto-axial joint). J Bone Joint Surg Am 1977; 59: 37-44
  • 59 Tuli S, Tator CH, Fehlings MG et al. Occipital condyle fractures. Neurosurgery 1997; 41: 368-376 ; discussion: 376–377
  • 60 Kakarla UK, Chang SW, Theodore N et al. Atlas fractures. Neurosurgery 2010; 66: 60-67
  • 61 Fowler JL, Sandhu A, Fraser RD. A review of fractures of the atlas vertebra. J Spinal Disord 1990; 3: 19-24
  • 62 Levine AM, Edwards CC. Fractures of the atlas. J Bone Joint Surg Am 1991; 73: 680-691
  • 63 Spence Jr KF, Decker S, Sell KW. Bursting atlantal fracture associated with rupture of the transverse ligament. J Bone Joint Surg Am 1970; 52: 543-549
  • 64 Dickman CA, Greene KA, Sonntag VK. Injuries involving the transverse atlantal ligament: classification and treatment guidelines based upon experience with 39 injuries. Neurosurgery 1996; 38: 44-50
  • 65 Heller JG, Viroslav S, Hudson T. Jefferson fractures: the role of magnification artifact in assessing transverse ligament integrity. J Spinal Disord 1993; 6: 392-396
  • 66 Greene KA, Dickman CA, Marciano FF et al. Acute axis fractures: analysis of management and outcome in 340 consecutive cases. Spine (Phila Pa 1976) 1997; 22: 1843-1852
  • 67 Pryputniewicz DM, Hadley MN. Axis fractures. Neurosurgery 2010; 66 (Suppl. 03) 68-82
  • 68 Lakshmanan P, Jones A, Howes J et al. CT evaluation of the pattern of odontoid fractures in the elderly: relationship to upper cervical spine osteoarthritis. Eur Spine J 2005; 14: 78-83
  • 69 Julien TD, Frankel B, Traynelis VC et al. Evidence-based analysis of odontoid fracture management. Neurosurg Focus 2000; 8: e1
  • 70 Traynelis VC. Evidence-based management of type II odontoid fractures. Clin Neurosurg 1997; 44: 41-49
  • 71 Hadley MN, Browner C, Sonntag VK. Axis fractures: a comprehensive review of management and treatment in 107 cases. Neurosurgery 1985; 17: 281-290
  • 72 Dunn ME, Seljeskog EL. Experience in the management of odontoid process injuries: an analysis of 128 cases. Neurosurgery 1986; 18: 306-310
  • 73 Ekong CE, Schwartz ML, Tator CH et al. Odontoid fracture: management with early mobilization using the halo device. Neurosurgery 1981; 9: 631-637
  • 74 Lennarson PJ, Mostafavi H, Traynelis VC et al. Management of type II dens fractures: a case-control study. Spine (Phila Pa 1976) 2000; 25: 1234-1237
  • 75 Hadley MN, Browner CM, Liu SS et al. New subtype of acute odontoid fractures (type IIA). Neurosurgery 1988; 22: 67-71
  • 76 Koivikko MP, Kiuru MJ, Koskinen SK. Occurrence of comminution (type IIA) in type II odontoid process fractures: a multi-slice CT study. Emerg Radiol 2003; 10: 84-86
  • 77 Traynelis VC, Marano GD, Dunker RO et al. Traumatic atlanto-occipital dislocation: case report. J Neurosurg 1986; 65: 863-870
  • 78 Wood-Jones F. The ideal lesion produced by judicial hanging. Lancet 1913; 4662: 53
  • 79 Schneider RC, Livingston KE, Cave AJ et al. “Hangman’s fracture” of the cervical spine. J Neurosurg 1965; 22: 141-154
  • 80 Burke JT, Harris Jr JH. Acute injuries of the axis vertebra. Skeletal Radiol 1989; 18: 335-346
  • 81 Mirvis SE, Young JW, Lim C et al. Hangman’s fracture: radiologic assessment in 27 cases. Radiology 1987; 163: 713-717
  • 82 Suchomel P, Choutka O. Miscellaneous C2 fractures. Berlin, Germany: Springer; 2011
  • 83 Roche CJ, O’Malley M, Dorgan JC et al. A pictorial review of atlanto-axial rotatory fixation: key points for the radiologist. Clin Radiol 2001; 56: 947-958
  • 84 Roche CJ, King SJ, Dangerfield PH et al. The atlanto-axial joint: physiological range of rotation on MRI and CT. Clin Radiol 2002; 57: 103-108
  • 85 Johnson DP, Fergusson CM. Early diagnosis of atlanto-axial rotatory fixation. J Bone Joint Surg Br 1986; 68: 698-701
  • 86 Allen Jr BL, Ferguson RL, Lehmann TR et al. A mechanistic classification of closed, indirect fractures and dislocations of the lower cervical spine. Spine (Phila Pa 1976) 1982; 7: 1-27
  • 87 Aarabi B, Walters BC, Dhall SS et al. Subaxial cervical spine injury classification systems. Neurosurgery 2013; 72: 170-186
  • 88 Harris Jr JH, Edeiken-Monroe B, Kopaniky DR. A practical classification of acute cervical spine injuries. Orthop Clin North Am 1986; 17: 15-30
  • 89 Shono Y, McAfee PC, Cunningham BW. The pathomechanics of compression injuries in the cervical spine: nondestructive and destructive investigative methods. Spine (Phila Pa 1976) 1993; 18: 2009-2019
  • 90 Anderson PA, Moore TA, Davis KW et al. Cervical spine injury severity score: assessment of reliability. J Bone Joint Surg Am 2007; 89: 1057-1065
  • 91 Stone AT, Bransford RJ, Lee MJ et al. Reliability of classification systems for subaxial cervical injuries. Evid Based Spine Care J 2010; 1: 19-26
  • 92 Moore TA, Vaccaro AR, Anderson PA. Classification of lower cervical spine injuries. Spine (Phila Pa 1976) 2006; 31 (Suppl. 11) S37-S43 (discussion: S61)
  • 93 Vaccaro AR, Lehman Jr RAJ, Hurlbert RJ et al. A new classification of thoracolumbar injuries: the importance of injury morphology, the integrity of the posterior ligamentous complex, and neurologic status. Spine (Phila Pa 1976) 2005; 30: 2325-2333
  • 94 Patel AA, Dailey A, Brodke DS et al. Subaxial cervical spine trauma classification: the Subaxial Injury Classification system and case examples. Neurosurg Focus 2008; 25: E8
  • 95 Dvorak MF, Fisher CG, Fehlings MG et al. The surgical approach to subaxial cervical spine injuries: an evidence-based algorithm based on the SLIC classification system. Spine (Phila Pa 1976) 2007; 32: 2620-2629
  • 96 Edeiken-Monroe BW, Wagner LK, Harris Jr JH. Hyperextension dislocation of the cervical spine. AJR Am J Roentgenol 1986; 146: 803-808
  • 97 Braakman R, Vinken PJ. Unilateral facet interlocking in the lower cervical spine. J Bone Joint Surg Br 1967; 49: 249-257
  • 98 Miyanji F, Furlan JC, Aarabi B et al. Acute cervical traumatic spinal cord injury: MR imaging findings correlated with neurologic outcome – prospective study with 100 consecutive patients. Radiology 2007; 243: 820-827
  • 99 Vaccaro AR, Falatyn SP, Flanders AE et al. Magnetic resonance evaluation of the intervertebral disc, spinal ligaments, and spinal cord before and after closed traction reduction of cervical spine dislocations. Spine (Phila Pa 1976) 1999; 24: 1210-1217
  • 100 Mellado JM, Larrosa R, Martín J et al. MDCT of variations and anomalies of the neural arch and its processes. II. Articular processes, transverse processes, and high cervical spine. AJR Am J Roentgenol 2011; 197: W114-W121
  • 101 Sharma A, Gaikwad SB, Deol PS et al. Partial aplasia of the posterior arch of the atlas with an isolated posterior arch remnant: findings in three cases. AJNR Am J Neuroradiol 2000; 21: 1167-1171
  • 102 Carr RB, Fink KR, Gross JA. Imaging of trauma. I. Pseudotrauma of the spine – osseous variants that may simulate injury. AJR Am J Roentgenol 2012; 199: 1200-1206
  • 103 Geipel P. Studies on the fissure formation of the atlas and epistropheus. IV [in German]. Zentralbl Allg Pathol 1955; 94: 19-84
  • 104 Klimo Jr P, Kan P, Rao G et al. Os odontoideum: presentation, diagnosis, and treatment in a series of 78 patients. J Neurosurg Spine 2008; 9: 332-342