Neuroradiologie Scan 2015; 05(03): 215-238
DOI: 10.1055/s-0034-1392229
Fortbildung
© Georg Thieme Verlag KG Stuttgart · New York

Kongenitale Anomalien der hinteren Schädelgrube[1]

Congenital abnormalities of the posterior fossa
Thangamadhan Bosemani
,
Gunes Orman
,
Eugen Boltshauser
,
Aylin Tekes
,
Thierry A. G. M. Huisman
,
Andrea Poretti
Further Information

Publication History

Publication Date:
10 July 2015 (online)

Zusammenfassung

Infolge der Fortschritte auf dem Gebiet des Neuroimaging haben Häufigkeit und Bedeutung der Untersuchung der hinteren Schädelgrube in den letzten 20 Jahren signifikant zugenommen. Herkömmliche und hochmoderne Neuroimaging-Verfahren erlauben heutzutage die detaillierte Beurteilung der komplexen anatomischen Strukturen in der hinteren Schädelgrube. Nachgewiesen wurde ein breites Spektrum kongenitaler Anomalien, darunter Fehlbildungen (Anomalien aufgrund eines durch einen genetischen Defekt veränderten primären Entwicklungsprogramms) und Entwicklungsstörungen oder Disruptionen (Anomalien aufgrund der Schädigung einer Struktur, die vorher ein normales Entwicklungspotenzial besaß). Vertrautheit mit dem Spektrum kongenitaler Anomalien der hinteren Schädelgrube und ihren gut definierten diagnostischen Kriterien ist entscheidend für eine optimale Therapie, eine zutreffende Prognose und eine korrekte genetische Beratung. Die Autoren erläutern das Spektrum der Fehlbildungen und Disruptionen der hinteren Schädelgrube unter besonderer Beachtung der Neuroimaging-Befunde (einschließlich der diagnostischen Kriterien), der neurologischen Symptomatik, der systemischen Beteiligung, der Prognose und des Wiederholungsrisikos.

Abstract

The frequency and importance of the evaluation of the posterior fossa have increased significantly over the past 20 years owing to advances in neuroimaging. Nowadays, conventional and advanced neuroimaging techniques allow detailed evaluation of the complex anatomic structures within the posterior fossa. A wide spectrum of congenital abnormalities has been demonstrated, including malformations (anomalies due to an alteration of the primary developmental program caused by a genetic defect) and disruptions (anomalies due to the breakdown of a structure that had a normal developmental potential). Familiarity with the spectrum of congenital posterior fossa anomalies and their well-defined diagnostic criteria is crucial for optimal therapy, an accurate prognosis, and correct genetic counseling. The authors discuss the spectrum of posterior fossa malformations and disruptions, with emphasis on neuroimaging findings (including diagnostic criteria), neurologic presentation, systemic involvement, prognosis, and risk of recurrence.

1 © 2015 The Radiological Society of North America. All rights reserved. Originally puplished in English in RadioGraphics 2015; 35: 200 – 220. Online published in 10.1148 /rg.351140038. Translated and reprinted with permission of RSNA. RSNA is not responsible for any inaccuracy or error arising from the translation from English to German.


 
  • Literatur

  • 1 Patel S, Barkovich AJ. Analysis and classification of cerebellar malformations. AJNR Am J Neuroradiol 2002; 23 : 1074-1087
  • 2 Parisi MA, Dobyns WB. Human malformations of the midbrain and hindbrain: review and proposed classification scheme. Mol Genet Metab 2003; 80: 36-53
  • 3 Barkovich AJ, Millen KJ, Dobyns WB. A developmental and genetic classification for midbrain-hindbrain malformations. Brain 2009; 132: 3199-3230
  • 4 Boltshauser E. Cerebellum: small brain but large confusion – a review of selected cerebellar malformations and disruptions. Am J Med Genet A 2004; 126A: 376-385
  • 5 Poretti A, Prayer D, Boltshauser E. Morphological spectrum of prenatal cerebellar disruptions. Eur J Paediatr Neurol 2009; 13: 397-407
  • 6 Hennekam RC, Biesecker LG, Allanson JE et al. Elements of morphology: general terms for congenital anomalies. Am J Med Genet A 2013; 161A: 2726-2733
  • 7 de Vries LS, Mancini GM. Intracerebral hemorrhage and COL4A1 and COL4A2 mutations, from fetal life into adulthood. Ann Neurol 2012; 71: 439-441
  • 8 Doherty D, Millen KJ, Barkovich AJ. Midbrain and hindbrain malformations: advances in clinical diagnosis, imaging, and genetics. Lancet Neurol 2013; 12: 381-393
  • 9 Poretti A, Meoded A, Rossi A et al. Diffusion tensor imaging and fiber tractography in brain malformations. Pediatr Radiol 2013; 43: 28-54
  • 10 Bosemani T, Poretti A, Huisman TA. Susceptibility-weighted imaging in pediatric neuroimaging. J Magn Reson Imaging 2014; 40: 530-544
  • 11 Barth PG. Pontocerebellar hypoplasias: an overview of a group of inherited neurodegenerative disorders with fetal onset. Brain Dev 1993; 15: 411-422
  • 12 Kumar R, Jain MK, Chhabra DK. Dandy-Walker syndrome: different modalities of treatment and outcome in 42 cases. Childs Nerv Syst 2001; 17: 348-352
  • 13 Alexiou GA, Sfakianos G, Prodromou N. Dandy-Walker malformation: analysis of 19 cases. J Child Neurol 2010; 25: 188-191
  • 14 Boddaert N, Klein O, Ferguson N et al. Intellectual prognosis of the Dandy-Walker malformation in children: the importance of vermian lobulation. Neuroradiology 2003; 45: 320-324
  • 15 Bolduc ME, Limperopoulos C. Neurodevelopmental outcomes in children with cerebellar malformations: a systematic review. Dev Med Child Neurol 2009; 51: 256-267
  • 16 Poretti A, Scheer I, Boltshauser E. Posterior fossa cysts and cyst-like malformations (Blake’s pouch cyst, arachnoid cysts, and mega cisterna magna). In: Boltshauser E, Schmahmann JD, , eds. Cerebellar disorders in children. London, England: Mac Keith; 2012: 212-216
  • 17 Tortori-Donati P, Fondelli MP, Rossi A et al. Cystic malformations of the posterior cranial fossa originating from a defect of the posterior membranous area: mega cisterna magna and persisting Blake’s pouch – two separate entities. Childs Nerv Syst 1996; 12: 303-308
  • 18 Nelson Jr. MD, Maher K, Gilles FH. A different approach to cysts of the posterior fossa. Pediatr Radiol 2004; 34: 720-732
  • 19 Cornips EM, Overvliet GM, Weber JW et al. The clinical spectrum of Blake’s pouch cyst: report of six illustrative cases. Childs Nerv Syst 2010; 26: 1057-1064
  • 20 Yildiz H, Yazici Z, Hakyemez B et al. Evaluation of CSF flow patterns of posterior fossa cystic malformations using CSF flow MR imaging. Neuroradiology 2006; 48: 595-605
  • 21 Barkovich AJ, Kjos BO, Norman D et al. Revised classification of posterior fossa cysts and cystlike malformations based on the results of multiplanar MR imaging. AJR Am J Roentgenol 1989; 153: 1289-1300
  • 22 Ali ZS, Lang SS, Bakar D et al. Pediatric intracranial arachnoid cysts: comparative effectiveness of surgical treatment options. Childs Nerv Syst 2014; 30: 461-469
  • 23 Marin-Sanabria EA, Yamamoto H, Nagashima T et al. Evaluation of the management of arachnoid cyst of the posterior fossa in pediatric population: experience over 27 years. Childs Nerv Syst 2007; 23: 535-542
  • 24 Estroff JA, Scott MR, Benacerraf BR. Dandy-Walker variant: prenatal sonographic features and clinical outcome. Radiology 1992; 185: 755-758
  • 25 Limperopoulos C, Robertson RL, Estroff JA et al. Diagnosis of inferior vermian hypoplasia by fetal magnetic resonance imaging: potential pitfalls and neurodevelopmental outcome. Am J Obstet Gynecol 2006; 194: 1070-1076
  • 26 Tarui T, Limperopoulos C, Sullivan NR et al. Long-term developmental outcome of children with a fetal diagnosis of isolated inferior vermian hypoplasia. Arch Dis Child Fetal Neonatal Ed 2014; 99: F54-F58
  • 27 Jissendi-Tchofo P, Kara S, Barkovich AJ. Midbrain-hindbrain involvement in lissencephalies. Neurology 2009; 72: 410-418
  • 28 Hong SE, Shugart YY, Huang DT et al. Autosomal recessive lissencephaly with cerebellar hypoplasia is associated with human RELN mutations. Nat Genet 2000; 26: 93-96 (correction: Nat Genet 2001; 27: 225)
  • 29 Boycott KM, Flavelle S, Bureau A et al. Homozygous deletion of the very low density lipoprotein receptor gene causes autosomal recessive cerebellar hypoplasia with cerebral gyral simplification. Am J Hum Genet 2005; 77: 477-483
  • 30 Cushion TD, Dobyns WB, Mullins JG et al. Overlapping cortical malformations and mutations in TUBB2B and TUBA1A. Brain 2013; 136: 536-548
  • 31 Toelle SP, Yalcinkaya C, Kocer N et al. Rhombencephalosynapsis: clinical findings and neuroimaging in 9 children. Neuropediatrics 2002; 33: 209-214
  • 32 Poretti A, Alber FD, Bürki S et al. Cognitive outcome in children with rhombencephalosynapsis. Eur J Paediatr Neurol 2009; 13: 28-33
  • 33 Sukhudyan B, Jaladyan V, Melikyan G et al. Gómez-López-Hernández syndrome: reappraisal of the diagnostic criteria. Eur J Pediatr 2010; 169: 1523-1528
  • 34 Ishak GE, Dempsey JC, Shaw DW et al. Rhombencephalosynapsis: a hindbrain malformation associated with incomplete separation of midbrain and forebrain, hydrocephalus and a broad spectrum of severity. Brain 2012; 135: 1370-1386
  • 35 Poretti A, Mall V, Smitka M et al. Macrocerebellum: significance and pathogenic considerations. Cerebellum 2012; 11: 1026-1036
  • 36 Alqahtani E, Huisman TA, Boltshauser E et al. Mucopolysaccharidoses type I and II: new neuroimaging findings in the cerebellum. Eur J Paediatr Neurol 2014; 18: 211-217
  • 37 Poretti A, Boltshauser E. Macrocerebellum. In: Boltshauser E, Schmahmann JD, , eds. Cerebellar disorders in children. London, England: Mac Keith; 2012: 192-194
  • 38 Poretti A, Boltshauser E. Cerebellar dysplasia. In: Boltshauser E, Schmahmann JD, , eds. Cerebellar disorders in children. London, England: Mac Keith; 2012: 172-176
  • 39 Demaerel P. Abnormalities of cerebellar foliation and fissuration: classification, neurogenetics and clinicoradiological correlations. Neuroradiology 2002; 44: 639-646
  • 40 Chudley AE, McCullough C, McCullough DW. Bilateral sensorineural deafness and hydrocephalus due to foramen of Monro obstruction in sibs: a newly described autosomal recessive disorder. Am J Med Genet 1997; 68: 350-356
  • 41 Doherty D, Chudley AE, Coghlan G et al. GPSM2 mutations cause the brain malformations and hearing loss in Chudley-McCullough syndrome. Am J Hum Genet 2012; 90: 1088-1093 (correction: Am J Hum Genet 2012; 91: 209)
  • 42 Namavar Y, Barth PG, Kasher PR et al. Clinical, neuroradiological and genetic findings in pontocerebellar hypoplasia. Brain 2011; 134: 143-156
  • 43 Namavar Y, Barth PG, Poll-The BT et al. Classification, diagnosis and potential mechanisms in pontocerebellar hypoplasia. Orphanet J Rare Dis 2011; 6: 50
  • 44 Mochida GH, Ganesh VS, de Michelena MI et al. CHMP1A encodes an essential regulator of BMI1-INK4A in cerebellar development. Nat Genet 2012; 44: 1260-1264
  • 45 Akizu N, Cantagrel V, Schroth J et al. AMPD2 regulates GTP synthesis and is mutated in a potentially treatable neurodegenerative brainstem disorder. Cell 2013; 154: 505-517
  • 46 Schaffer AE, Eggens VR, Caglayan AO et al. CLP1 founder mutation links tRNA splicing and maturation to cerebellar development and neurodegeneration. Cell 2014; 157: 651-663
  • 47 Poretti A, Wolf NI, Boltshauser E. Differential diagnosis of cerebellar atrophy in childhood. Eur J Paediatr Neurol 2008; 12: 155-167
  • 48 Feraco P, Mirabelli-Badenier M, Severino M et al. The shrunken, bright cerebellum: a characteristic MRI finding in congenital disorders of glycosylation type 1a. AJNR Am J Neuroradiol 2012; 33 : 2062-2067
  • 49 Messerschmidt A, Brugger PC, Boltshauser E et al. Disruption of cerebellar development: potential complication of extreme prematurity. AJNR Am J Neuroradiol 2005; 26: 1659-1667
  • 50 Najm J, Horn D, Wimplinger I et al. Mutations of CASK cause an X-linked brain malformation phenotype with microcephaly and hypoplasia of the brainstem and cerebellum. Nat Genet 2008; 40: 1065-1067
  • 51 Takanashi J, Arai H, Nabatame S et al. Neuroradiologic features of CASK mutations. AJNR Am J Neuroradiol 2010; 31: 1619-1622
  • 52 Burglen L, Chantot-Bastaraud S, Garel C et al. Spectrum of pontocerebellar hypoplasia in 13 girls and boys with CASK mutations: confirmation of a recognizable phenotype and first description of a male mosaic patient. Orphanet J Rare Dis 2012; 7: 18
  • 53 Doherty D. Joubert syndrome: insights into brain development, cilium biology, and complex disease. Semin Pediatr Neurol 2009; 16: 143-154
  • 54 Romani M, Micalizzi A, Valente EM. Joubert syndrome: congenital cerebellar ataxia with the molar tooth. Lancet Neurol 2013; 12: 894-905
  • 55 Gleeson JG, Keeler LC, Parisi MA et al. Molar tooth sign of the midbrain-hindbrain junction: occurrence in multiple distinct syndromes. Am J Med Genet A 2004; 125A: 125-134 (discussion: 117)
  • 56 Poretti A, Huisman TA, Scheer I et al. Joubert syndrome and related disorders: spectrum of neuroimaging findings in 75 patients. AJNR Am J Neuroradiol 2011; 32: 1459-1463
  • 57 Brancati F, Dallapiccola B, Valente EM. Joubert syndrome and related disorders. Orphanet J Rare Dis 2010; 5: 20
  • 58 Poretti A, Vitiello G, Hennekam RC et al. Delineation and diagnostic criteria of oral-facial-digital syndrome type VI. Orphanet J Rare Dis 2012; 7: 4
  • 59 Poretti A, Boltshauser E, Loenneker T et al. Diffusion tensor imaging in Joubert syndrome. AJNR Am J Neuroradiol 2007; 28 : 1929-1933
  • 60 Clement E, Mercuri E, Godfrey C et al. Brain involvement in muscular dystrophies with defective dystroglycan glycosylation. Ann Neurol 2008; 64: 573-582
  • 61 Poretti A, Häusler M, von Moers A et al. Ataxia, intellectual disability, and ocular apraxia with cerebellar cysts: a new disease?. Cerebellum 2014; 13: 79-88
  • 62 Godfrey C, Clement E, Mein R et al. Refining genotype phenotype correlations in muscular dystrophies with defective glycosylation of dystroglycan. Brain 2007; 130: 2725-2735
  • 63 Barth PG, Majoie CB, Caan MW et al. Pontine tegmental cap dysplasia: a novel brain malformation with a defect in axonal guidance. Brain 2007; 130: 2258-2266
  • 64 Briguglio M, Pinelli L, Giordano L et al. Pontine tegmental cap dysplasia: developmental and cognitive outcome in three adolescent patients. Orphanet J Rare Dis 2011; 6: 36
  • 65 Rauscher C, Poretti A, Neuhann TM et al. Pontine tegmental cap dysplasia: the severe end of the clinical spectrum. Neuropediatrics 2009; 40: 43-46
  • 66 Jissendi-Tchofo P, Doherty D, McGillivray G et al. Pontine tegmental cap dysplasia: MR imaging and diffusion tensor imaging features of impaired axonal navigation. AJNR Am J Neuroradiol 2009; 30: 113-119
  • 67 Jen JC, Chan WM, Bosley TM et al. Mutations in a human ROBO gene disrupt hindbrain axon pathway crossing and morphogenesis. Science 2004; 304: 1509-1513
  • 68 Rossi A, Catala M, Biancheri R et al. MR imaging of brain-stem hypoplasia in horizontal gaze palsy with progressive scoliosis. AJNR Am J Neuroradiol 2004; 25: 1046-1048
  • 69 Bosley TM, Salih MA, Jen JC et al. Neurologic features of horizontal gaze palsy and progressive scoliosis with mutations in ROBO3. Neurology 2005; 64: 1196-1203
  • 70 Sicotte NL, Salamon G, Shattuck DW et al. Diffusion tensor MRI shows abnormal brainstem crossing fibers associated with ROBO3 mutations. Neurology 2006; 67: 519-521
  • 71 Zaki MS, Saleem SN, Dobyns WB et al. Diencephalic-mesencephalic junction dysplasia: a novel recessive brain malformation. Brain 2012; 135: 2416-2427
  • 72 Limperopoulos C. Cerebellar injury in the preterm infant. In: Boltshauser E, Schmahmann JD, , eds. Cerebellar disorders in children. London, England: Mac Keith; 2011: 314-321
  • 73 Boltshauser E. Cerebellar imaging: an important signpost in paediatric neurology. Childs Nerv Syst 2001; 17: 211-216
  • 74 Reardon W, Donnai D. Dysmorphology demystified. Arch Dis Child Fetal Neonatal Ed 2007; 92: F225-F229
  • 75 Sellick GS, Barker KT, Stolte-Dijkstra I et al. Mutations in PTF1A cause pancreatic and cerebellar agenesis. Nat Genet 2004; 36: 1301-1305
  • 76 Hoveyda N, Shield JP, Garrett C et al. Neonatal diabetes mellitus and cerebellar hypoplasia/agenesis: report of a new recessive syndrome. J Med Genet 1999; 36: 700-704
  • 77 Poretti A, Boltshauser E, Doherty D. Cerebellar hypoplasia: differential diagnosis and diagnostic approach. Am J Med Genet C Semin Med Genet 2014; 166: 211-226
  • 78 Poretti A, Limperopoulos C, Roulet-Perez E et al. Outcome of severe unilateral cerebellar hypoplasia. Dev Med Child Neurol 2010; 52: 718-724
  • 79 Massoud M, Cagneaux M, Garel C et al. Prenatal unilateral cerebellar hypoplasia in a series of 26 cases: significance and implications for prenatal diagnosis. Ultrasound Obstet Gynecol 2014; 44: 447-454
  • 80 Benbir G, Kara S, Yalcinkaya BC et al. Unilateral cerebellar hypoplasia with different clinical features. Cerebellum 2011; 10: 49-60
  • 81 Poretti A, Huisman TA, Cowan FM et al. Cerebellar cleft: confirmation of the neuroimaging pattern. Neuropediatrics 2009; 40: 228-233
  • 82 Boltshauser E, Schneider J, Kollias S et al. Vanishing cerebellum in myelomeningocele. Eur J Paediatr Neurol 2002; 6: 109-113
  • 83 Limperopoulos C, Soul JS, Gauvreau K et al. Late gestation cerebellar growth is rapid and impeded by premature birth. Pediatrics 2005; 115: 688-695
  • 84 Messerschmidt A, Prayer D, Brugger PC et al. Preterm birth and disruptive cerebellar development: assessment of perinatal risk factors. Eur J Paediatr Neurol 2008; 12: 455-460
  • 85 Steggerda SJ, Leijser LM, Wiggers-de Bruïne FT et al. Cerebellar injury in preterm infants: incidence and findings on US and MR images. Radiology 2009; 252: 190-199
  • 86 Volpe JJ. Cerebellum of the premature infant: rapidly developing, vulnerable, clinically important. J Child Neurol 2009; 24: 1085-1104
  • 87 Limperopoulos C, Benson CB, Bassan H et al. Cerebellar hemorrhage in the preterm infant: ultrasonographic findings and risk factors. Pediatrics 2005; 116: 717-724